This page contains a Flash digital edition of a book.
Screening


1536-well assay plates (Greiner) comprising a tightly closing lid can mitigate this risk7. Third, when using third party software, images have to be transferred to a specific database and convert- ed to a specific format before the analysis. Considering the vast amount of data generated, this process needs to be run in parallel to imaging. Data management and data mining can be prob- lematic when using different imagers or image analysis software packages. Based on the variety of image and metadata formats it can be a chal- lenge to enable a link from image to result files. Software tools enabling the search of plates, com- pounds, or treatments combined with image and data visualisation for comparison of images and data generated by different imagers are still a major need in the field of HCS.


Summary and outlook


Despite the challenges mentioned, HCI is ren- dered possible for high throughput screening in primary hit finding campaigns using dedicated automated platforms able to deal with complex immuno-staining protocols in 1536-well formats. In order to do so, high-speed imagers allowing fast ‘on the fly’ image analysis combined with data analysis software and a dedicated IT infra- structure to manage and mine the wealth of data produced are required. The technology has proven to be mature for primary screening in drug discovery projects adding value by enabling novel assay formats that used to be impossible with conventional technologies. From now on, when the question is raised: Can you do high-con- tent imaging assays in high throughput? The answer will be: “Yes, we can!” However, there is still room for improvement. The implementation of complex assays exploiting, for example, pri- mary cells, live cell imaging, cell migration or 3D imaging in real high-throughput format, are still a challenge. The screening of a large number of plates for these assays will require substantial adaptations in cell culture, plate preparation, imaging devices and screening processes. Nevertheless, the benefit of physiologically rele- vant assays early in the hit identification process is increasingly acknowledged which augments the demand to implement phenotypic and disease rel- evant assays in higher throughput.


Acknowledgement We would like to acknowledge G. Hofmann, Y. Ibig- Rehm, D. Siebert, M. Pfeifer, M. Goette, E. Schmidt and X. Zhang for fruitful discussions and contribu- tions to HCS projects. E. Althof and F. Grandjean


Drug Discovery World Winter 2011/12


are thanked for automation support, A. Kümmel and P. Selzer for generation of the multi-parametric data analysis tool, J. Lin for image visualisation, H.P. Gubler, M. Schröder and I. Hossain for IT and P. Fürst for managerial support.


DDW


Dr Vincent Unterreiner is a Scientist II at the Novartis Institute for BioMedical Research where he is developing and performing high content imaging assays for drug discovery. He studied cell biology and pharmacology at the University Louis Pasteur in Strasbourg where he obtained his Master’s degree in 2000.


Dr Daniela Gabriel has been heading up the Medium Throughput Screening group at the Novartis Institute for BioMedical Research since 2005. In 1998 she received her PhD in Biochemistry from the Max Planck Institute of Biochemistry in Martinsried, Germany.


25


References 1Taylor, DL, Woo, ES, Guiliano, KA (2001). Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr. Opin. Biotech. 12, 75-81. 2 Xu, G, Mawji, I, Macrae, C, Koch, C, Datti, A, Wrana, J, Dennis, J, Schimmer, A (2008). A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization. Apoptosis 13:413-422. 3 Ibig-Rehm, Y, Götte, M, Gabriel, D, Woodhal, D, Shea, A, Brown, NE, Compton, T and Feire, AL (2011). High-content screening to distinguish between attachment and post- attachment steps of human cytomegalovirus entry into fibroblasts and epithelial cells. Antiviral Res., Vol. 89, No. 3, pp.246-256. 4 Thomsen, W, Frazer, WJ, Unett, D (2005). Functional assays for screening GPCR targets. Curr. Opin. Biotech. 16, 655-665. 5 Unterreiner, V, Ibig-Rehm, Y, Simonen, M, Gubler, H and Gabriel, D (2009). Comparison of variability and sensitivity between nuclear translocation and luciferase reporter gene assays. J. Biomol. Screen., Vol.14, No. 1, pp. 59-65. 6 Kümmel, A, Selzer, P, Beibel, M, Gubler, H, Parker, CN and Gabriel, D (2011). Comparison of multivariate data analysis strategies for high-content screening. J. Biomol. Screen., Vol. 16, No. 3, pp. 338-347. 7 Pfeifer, MJ and Scheel, G (2009). Long-term storage of compound solutions for high- throughput screening by using a novel 1536 well microplate. J. Biomol. Screen., Vol. 14, No. 5, pp. 492-498.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80