This page contains a Flash digital edition of a book.
Automation


SMALL-SCALE BENCHTOP


AUTOMATION broadening the adoption of lab automation


Driven by the need to enable technically challenging or repetitive processes, many labs in drug discovery that were not previously adopters of laboratory automation are being increasingly drawn to the potential of simple small-scale benchtop automation. The immediately obvious benefits (ie cost, labour savings, better quality data, etc) are key to making small-scale benchtop automation accessible, particularly when they are coupled with moderate flexibility and moderate walkaway automation. Interest is greatest for those emerging applications of sample prep (ie protein and nucleic acid extraction, next gen sequencing, qPCR setup and the quantification and normalisation of genomic DNA samples). Recent advances in small scale bench-top automation can be summarised by instrument developments in the following areas: compact configurations; enclosed instruments; extended pipetting ranges; end-user empowerment; pre-validated protocols; turnkey solutions; new software; and new robotic configurations. Judging by the number of new instrument launches at the SLAS 2012 Conference & Exhibition, we can expect small-scale automation to generate considerable interest among bench scientists in the months ahead.


W


hen thinking of laboratory automation frequently what first comes to mind are large robotic systems, most often requiring dedicated or contained facilities and highly trained personnel. The past decade saw the emergence of many vendors specialising in deliver- ing such complex automated solutions. These ven- dors primarily served the needs of those pharma and biotech scientists involved in the core groups


Drug Discovery World Winter 2011/12


associated with high throughput screening (HTS) and profiling, compound management, sample storage and large-scale cell culture and mainte- nance. However, for each of these core labs there are 10s-100s of other labs both upstream and downstream in each company potentially interest- ed in more efficient ways to carry out their routine tasks. Most of these potential automation oppor- tunities do not require high throughput or involve


By Dr John Comley


27


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80