This page contains a Flash digital edition of a book.
‘footprint’ approach is used to assess the maximum area over which likely and possible avoidance can occur in harbour porpoise. The noise footprint can be considered as containing the possible impact ranges for a given threshold which might occur, irrespective of the timing, specific location or number of piling vessels operating within the project boundary (Appendix 9.1). Therefore, the footprint area may be greater than the combined area for two concurrent piling vessels, but is considered to approximate to the worst case scenario in this assessment.


237. Monopile foundations will result in the worst spatial impact (i.e. will use the maximum hammer energy). With regard to the worst case temporal impact, the maximum duration of piling noise during construction of the off shore windfarm will result from the use of jackets (with four piles each), and only a single piling vessel operating at any one time.


238. For jacket foundations 1,800kJ is the maximum hammer energy that will be used, with a maximum of four piles per jacket. However, noise propagation modelling has not been completed for this hammer size, so the 2,000kJ hammer is used as a proxy.


239. As only a single piling vessel will result in the greatest temporal impact, the area of impact will be considered based on the location where the greatest ranges of impact are predicted.


240. Appendix 9.1 provides details on the ambient noise levels expected in the East Anglia THREE site. The ambient noise level is also highly likely to depend on the distance to shipping lanes, fishing areas, dredging areas or other areas where potential noise sources are operating. In the North Sea, the contribution of shipping noise to ambient levels has been shown to be significant (Ainslie et al. 2009). Natural environmental contributors to the ambient noise level in and around East Anglia THREE and the East Anglia Zone in general, will likely be from the wind (sea-state) with contributions from rain noise and biological noise. The primary anthropogenic contributors to the ambient noise level in the North Sea include shipping (e.g. fishing, cargo, cruise ship, ferries, and aggregate extraction) and oil and gas related activities. However, the ambient noise environment around the East Anglia THREE site would likely be dominated by local shipping (see section12.6.1.2 for current shipping levels) and sea-state.


241. The metrics used in the noise assessment are consistent with the Marine Strategy Framework Directive and include peak-to-peak pressure level and Sound Exposure Level (SEL). Sound Pressure Level (SPL) is used to describe the level of a continuous type noise such as shipping or operational wind turbine noise.


Preliminary Environmental Information May 2014


East Anglia THREE Offshore Windfarm


Chapter 12 Marine Mammal Ecology Page 66


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140