search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
842


Journal of Paleontology 89(5):821–844


are Kinosternon sonoriense (comprising two subspecies) and Kinosternon hirtipes murrayi, three taxa that live in the arid southwestern United States and northern Mexico (Ernst and Lovich, 2009). Kinosternon pannekollops and Kinosternon notolophus appear to be closely allied, and in turn the former is most closely related to the subrubrum group. However, K. notolophus shares a combination of carapacial features with the Sonoran mud turtle Kinosternon sonoriense sonoriense as well. It is currently unclear whether these similarities with K. s. sonoriense are purely homoplastic or phylogenetically significant based on the limited fossils of K. notolophus. If the latter, the occurrence of a plausible progenitor of K. s. sonoriense in Florida during the late Miocene has sig- nificant paleobiogeographical implications (perhaps related to more easterly distributed savanna-like habitats along the Gulf Coast [Webb, 1977]), and could even indicate a sister group relationship between the subrubrum group and K. sonoriense. The age and phylogenetic position of Kinosternon


pannekollops suggests that the subrubrum group diverged from other Kinosternon by the late middle to early late Miocene. This estimate is concordant with molecular-based divergence dates for the subrubrum group proposed by Iverson et al. (2013), although the range given in their results includes the middle Miocene. Interestingly, Kinosternon rincon is from the middle Miocene and is recovered as a plausible basal sister taxon of the subrubrum group in the phylogenetic results presented here. It is therefore not unlikely that the subrubrum group could have descended from K. rincon or a common ancestor that originated in xeric habitats of the southwestern United States. The group then likely emigrated into the open savanna-like portion of the central United States by the early Clarendonian, which is corroborated withUNSM125577 fromthe early Clarendonian of Nebraska and represents a species similar to K. rincon, but most like or synonymous with K. wakeeniense. Kinosternon wakeeniense and K. pannekollops from Texas were possibly contemporaneous and persisted in what is today the Great Plains region during the Clarendonian. This indicates that the progeni- tors of the subrubrum group (e.g., K. pannekollops)likely evolved in the late Miocene savannas of the Great Plains, and that the group has dispersed from that region over time. Under this scenario, the most likely route of dispersal for the subrubrum group would be from west to east, probably across the Gulf Coastal Plain to the Atlantic Coastal Plain. This seems plausible given that the Gulf Coastal Plain was comprised of woodland savanna and mesic forest habitats in the late Miocene (Webb, 1977; Webb et al., 1981) and that the Gulf Coastal Plain and Atlantic Coastal Plain regions (sensu lato) encompass the modern range of the subrubrum group today (Ernst and Lovich, 2009). The basal phylogenetic position and current geographic range of the Mississippi mud turtle, Kinosternon hippocrepis, suggest that the other members of the subrubrum group arose from K. hippocrepis or a common ancestor thereof that dispersed from the western Gulf Coastal Plain, from more open habitats in the central United States tomore closed canopy forests in eastern and southeastern United States. In some regard, this scenario agrees with the oldest reports of Kinosternon ‘subrubrum’ that are from the late Hemphillian (latest Miocene, earliest Pliocene) of the central United States in Kansas (Fichter, 1969).


The oldest reports of Kinosternon are based on scant water-


worn material from the Pollack Farm locality in Delaware (Holman, 1998; Weems and George, 2013). Those vouchers (USNM 483389) more likely represent a new kinosternine genus that shares similarities with both Kinosternon and Sternotherus (Bourque and Schubert, 2015). This taxon (Fig. 10; items 1 and 4 listed as Kinosterninae gen. et sp. nov.) also occurs in the early Barstovian Willacoochee Creek Local Fauna (Bryant, 1991; Bourque, 2013) of northern Florida, but there is no record of it younger than the early Barstovian. As such, the only two records are from the Atlantic and Gulf coastal plains during an interval that spans the Middle Miocene Climatic Optimum (Zachos et al., 2001), suggesting that this taxon may have gone extinct at the end of that megathermal event. However, Kinosternon herrerai (from the Gulf Coastal Plain of eastern Mexico) possesses plastral symplesiomorphies with this taxon at the exclusion of most other Kinosternon, such as very broad contact between the axillary and inguinal scutes on the hyoplastron and in many individuals a more anteriorly situated posterior humeral–femoral sulcus on the hypoplastron. Additionally, it has been suggested that K. herrerai is the most primitive modern Kinosternon in a number of morphological attributes (Bramble et al., 1984), and K. herrerai has been recovered as the most basal Kinosternon in some phylogenetic results (Iverson, 1991; results here in Fig. 9). Perhaps K. herrerai is a direct descendant (or last surviving member) of this otherwise extinct genus that used the Gulf Coastal Plain to disperse into Mexico, and like dermatemydids, staurotypines (e.g. the stem staurotypine Baltemys sensu Iverson [1991] and Bourque [2012b]), and geoemydids was once more northerly distributed, but has endured in a southern North American refugium. More complete fossils of this early to middle Miocene kinosternid will undoubtedly better our understanding of kinosternine phylogeny, particularly concern- ing the divergence between Kinosternon and Sternotherus and in ascertaining whether K. herrerai is primarily or secondarily plesiomorphic.


Accessibility of supplemental data


Supplemental data deposited in Dryad data package: http://dx. doi.org/10.5061/dryad.v6sm8 Acknowledgments


Many thanks to E. Gaffney and C. Mehling for allowing me to borrow, prepare, and study AMNH specimens discussed here; G. Corner, J. Head, L. Albaczinskas, K. Krysko, and M. Nickerson for specimen loans; R. Hulbert, B. MacFadden, and A. Wood for discussions and providing pertinent literature; J. Bloch for equipment use; E. Woodruff for assistance with phylogenetic analysis and for uploading matrix to the University of Florida High Performance Computing Center; C. Manz for phylogenetic discussions; P. Morse for gathering map data; S. Chester for travel to AMNH; R. Portell for identifying snail fossils associated with FAM 12778; C. May and R. Hare for modern specimen donations; J. O’Brien (Amarillo, TX) for granting me access to his ranch to visit the type area of FAM 12778 in June 2013; and W. Joyce, D. Brinkman, M. Silcox, and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212