This page contains a Flash digital edition of a book.
Measuring Förster Resonance Energy Transfer


or biosensor probe activities. T is non- invasive imaging technique provides a method to verify the results obtained by high-throughput screening methods. Most important, the measurements obtained from proteins in their natural environment inside living cells provide the most physiologically relevant information about protein behavior currently available.


Acknowledgements T is research was supported in part by NIH P30DK079312 and the Indiana University School of Medicine. T e author thanks Dr. Yuansheng Sun and Dr. Jeff Liao (ISS Inc., Champaign, IL) for their advice and technical support and Michael Davidson for the plasmids encoding the FPs.


References [1] RN Day and MW Davidson , eds., T e Fluorescent Protein Revolution , CRC Press , Boca Raton , 2014 .


[2] A Periasamy and RN Day , eds., Molecular Imaging: FRET Microscopy and Spectroscopy . Oxford University Press , New York , 2005 .


[3] A Periasamy and RM Clegg , eds., FLIM Microscopy in Biology and Medicine . Taylor & Francis , Boca Raton , 2010 .


[4] R N Day , Methods 66 ( 2014 ) 200 – 07 . [5] DM Jameson et al ., Appl Spectrosc Rev 20 ( 1984 ) 55 – 106 .


[6] GI Redford and RM Clegg , J Fluoresc 15 ( 2005 ) 805 – 15 .


[7] E Hinde et al ., Microsc Res Techniq 75 ( 2012 ) 271 – 81 .


[8] SV Koushik et al ., Biophys J 91 ( 2006 ) L99 – L101 .


[9] ML Markwardt et al ., PloS one 6 ( 2011 ) e17896 .


[10] J Goedhart et al ., Nat Methods 7 ( 2010 ) 137 – 39 .


Figure 6 : FRET-FLIM analysis of the heterologous interactions between the C/EBPα BZip domain and HP1α . (A) The intensity images for the nucleus of a cell expressing both the mTurquoise-BZip domain and mVenus-HP1α acquired in the acceptor channel, donor channel (the calibration bars are 10 μ m), and the corresponding lifetime map with I A / I D ratio indicated. (B) The intensity images for a cell expressing both the mTurquoiseN1 (localized throughout the cytoplasm and nucleus) and mVenus-HP1 α (nuclear) acquired in the acceptor channel, donor channel, and the corresponding lifetime map with the I A / I D ratio indicated. (C) FLIM was used to measure the donor lifetime in multiple ROI for each cell, and the FRET effi ciency (%) was determined. Each point represents the average E FRET (±SD) at the average I A / I D (±SD) for multiple ROI in individual cells expressing the indicated donor- and acceptor-labeled proteins. Reprinted from [ 4 ] with permission from Elsevier.


Conclusion T e FD FLIM method provides a direct measurement of FRET that requires no assumptions or corrections and is among the most accurate methods for monitoring protein interactions


50


[11] AP Siegel et al ., J Biomed Opt 18 ( 2013 ) 25002 .


[12] C T aler et al ., Biophys J 89 ( 2005 ) 2736 – 49 .


[13] JR Lakowicz , Principles of Fluorescence Spectroscopy , 3rd Ed. , Springer , New York , 2006 .


[14] SS Vogel et al ., PloS one 7 ( 2012 ) e49593 .


[15] C Stringari et al ., P Natl Acad Sci of the USA 108 ( 2011 ) 13582 – 87 .


[16] BK Wright et al ., Biophys J 103 ( 2012 ) L7 – 9 . www.microscopy-today.com • 2015 May


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76