This page contains a Flash digital edition of a book.
Xe Plasma FIB


range of materials and operating parameters used to evaluate the true limits of this technology. To date, single cross sections up to 1 mm wide have been produced, and serial-sectioning cross sections up to 300 μ m across and 200 μ m deep have been fabricated with slice thicknesses 50–500 nm thick. More work still needs to be done to better understand material interactions with the Xe + Plasma FIB. However, in comparison to traditional metallographic preparations of similar materials, PFIB-prepared samples have improved surface quality, yielding EBSD maps and high-resolution images that are essentially artifact-free.


Conclusions


3D data from serial sectioning using the PFIB-SEM across a range of materials suggest that the Xe + PFIB can routinely and quickly provide 3D serial section tomographs over dimensions of many hundreds of micrometers whilst retaining nanoscale resolution. T is tomographic technique has the ability to capture the rich detail of microstructures, as well as provide analysis by EBSD and EDS. T e range of scales available helps bridge the gap between conventional Ga + FIB and X-ray tomography for multiscale, multimodal 3D analysis.


Acknowledgements


We acknowledge the EPSRC for grants EP/J021229/1 and EP/M010619/1 and BIS Capital Funding that established the Multidisciplinary Characterization facility. Further authors gratefully acknowledge N. J. Henry Holroyd for the provision for


the Aluminum sample, Peter Liaw from University of Tennessee for the BMG sample, and Mark Gee from NPL for the WC-Co sample. DWM would like thank Dr. J. S. Earl, GlaxoSmithKline Consumer Healthcare, for fi nancial support. Our thanks also go to Rene Dobbe, Doug Hahn, and Trisha Rice at FEI Company for their support during this work.


References [1] E Maire and PJ Withers , Int Mater Rev 59 ( 2014 ) 1 – 43 . [2] MD Uchic et al ., MRS Bull 32 ( 2007 ) 408 – 16 . [3] I Borgh et al ., Acta Mat 61 ( 2013 ) 4726 – 33 . [4] T Hashimoto et al ., Ultramicroscopy 163 ( 2016 ) 6 – 18 . [5] C Kübel et al ., Microsc Microanal 11 ( 2005 ) 378 – 400 . [6] D Blavettea and S Duguay , Eur Phys J-Appl Phys 68 ( 2014 ) 10101-p1 – 10101-p12 .


[7] TL Burnett et al ., Microsc Microanal S3 21 ( 2015 ) 2003 – 04 .


[8] Introduction to Focused Ion Beams: Instrumentation, T eory, Techniques and Practice , eds. LA Giannuzzi and FA Stevie, Springer, New York, 2005.


[9] TL Burnett et al ., Scientifi c Reports 4 ( 2014 ) 4711 . [10] J Jiruše et al ., Microsc Microanal S2 18 ( 2012 ) 652 – 53 . [11] L Kwakman et al ., Frontiers of Characterization and Metrology for Nanoelectronics: 2011 1395 ( 2011 ) 269 .


[12] NS Smith et al ., J Vac Sci Technol B 24 ( 2006 ) 2902 – 06 . [13] TL Burnett et al ., Ultramicroscopy 161 ( 2016 ) 119 – 29 .


Introducing the Denton Vacuum Vitua®


- the


first automated TEM sample preparation system specifically designed to support high resolution rotary shadow casting of large organic molecules.


Visit us at: www.dentonvacuum.com/mt om/mt


2016 May • www.microscopy-today.com


37


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76