This page contains a Flash digital edition of a book.
different molecular weights (and the relative interactions established with specific receptors) has stimulated the need to be able to provide hyaluronan in the dermo– aesthetic field with different molecular weights and concentrations, so as to be able to perform precise and direct operations and build infiltration algorithms on specific targets. The development of


increasingly sophisticated synthesis technologies has recently led the IBSA laboratories to produce a whole range of hyaluronan at defined concentrations and molecular weights. In particular, the production of


stable molecular hybrids formed by combining high and low molecular weight hyaluronan makes it possible to emit concentrations of hyaluronan in the cutaneous region. This has generated a new intervention method which,


through a single infiltration solution, allows the levels of endogenous hyaluronan to be integrated with balanced concentrations of high and low weight hyaluronan hybrids. The combined action of the


hybrids associates the regenerating trophic effect of the low weights on the epidermis (HYDRO effect), and the plastic modelling effect of the dermis (LIFT effect) carried out by the high weights. Therefore, the 'HYDROLIFT


action' is proposed as a turnover regulator, which can prevent and/ or correct potential dysfunctions of cutaneous homeostasis.


References


1. Prost-Squarcioni C, Fraitag S, Heller M, Boehm N. Functional histology of dermis. Ann Dermatol Venereol 2008; 135(1 Pt 2): 1S5–20


2. Sayo T, Sugiyama Y, Takahashi Y et al. Hyaluronan synthase 3 regulates hyaluronan synthesis in cultured human keratinocytes. J Invest Dermatol 2002; 118(1): 43–8


3. Stair-Nawy S, Csóka AB, Stern R. Hyaluronidase expression in human skin fibroblasts. Biochem Biophys Res Commun 1999; 266(1): 268–73


4. Alho AM, Underhill CB. The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol 1989; 108(4): 1557–65


5. Stern R. Complicated hyaluronan patterns in skin: enlightenment by UVB? J Invest Dermatol 2007; 127(3): 512–3


6. Harada H, Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J Biol Chem 2007; 282(8): 5597–607


7. Darmstadt GL, Mentele L, Podbielski A, Rubens CE. Role of group A streptococcal virulence factors in adherence to keratinocytes. Infect Immun 2000; 68(3): 1215–21


8. Schröder JM, Harder J. Innate antimicrobial peptides in the skin. Med Sci (Paris) 2006; 22(2): 153–7


9. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91(1): 221–64


10. Smallwood R. Computational modeling of epithelial tissues. Wiley Interdiscip Rev Syst Biol Med 2009; 1(2): 191–201


11. Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 2007; 6(2): 75–82


12. Balazs EA, Bland PA, Denlinger JL et al. Matrix engineering. Blood Coagul Fibrinolysis. 1991; 2(1): 173–8


13. Tammi RH, Tammi MI. Hyaluronan accumulation in wounded epidermis: a mediator of keratinocyte activation. J Invest Dermatol. 2009; 129(8): 1858–60


14. Inoue S, Sayo T. Hyaluronan turnover and disease. Seikagaku 2005; 77(9): 1152–64


15. Hašová M, Crhák T, Safránková B et al. Hyaluronan minimizes effects of UV irradiation on human keratinocytes. Arch Dermatol Res 2011; 303(4): 277–84


16. Helbig D, Paasch U. Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 2011; 17(1): 119–28


17. Gebhardt C, Averbeck M, Diedenhofen N et al. Dermal hyaluronan is rapidly reduced by topical treatment with glucocorticoids. J Invest Dermatol 2010; 130(1): 141–9


18. Bertheim U, Engström-Laurent A, Hofer PA, Hallgren P, Asplund J, Hellström S. Loss of hyaluronan in the basement membrane zone of the skin correlates to the degree of stiff hands in diabetic patients. Acta Derm Venereol 2002; 82(5): 329–34


19. Stern R. Maibach HI. Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin Dermatol 2008; 26(2): 106–22


Properties of HA used in IBSA's intradermic product line


SAFETY PURITY


■ Biofermentative origin, produced using a natural, non-GMO bacterial cell strain (wild type): Streptococcus zooepidemicus equi


■ Guaranteed free of animal-derived components. No risk of allergy or transmission of viruses or prions (TSE, BSE)


■ Exclusion of toxic substances such as Cetylpyridinium Chloride (CPC)


■ Pharmaceutical grade, <0.05 U/mg endotoxins


■ Highly purified: very low levels of nucleic acids, proteins, iron, ethanol and water ■ Only one solvent used: pure ethanol


prime-journal.com | Product Portfolio





31


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76