This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
54


nanotimes News in Brief Semiconductors //


Cooling Semiconductor by Laser Light © Based on Material by Niels Bohr Institute, DK


R


esearchers at the Niels Bohr Institute discovered a new method for laser cooling semiconductor


membranes. The new cooling method works quite paradoxically by heating the material. Using lasers, researchers cooled membrane fluctuations to minus 269° C (-452° F).


“In experiments, we have succeeded in achieving a new and efficient cooling of a solid material by using lasers. We have produced a semiconductor membra- ne with a thickness of 160nm and an unprecedented surface area of 1 by 1mm. In the experiments, we let the membrane interact with the laser light in such a way that its mechanical movements affected the light that hit it. We carefully examined the physics and discovered that a certain oscillation mode of the membrane cooled from room temperature down to minus 269° C, which was a result of the complex and fascinating interplay between the movement of the membrane, the properties of the semiconductor and the optical resonances,” explains Koji Usami, associ- ate professor at Quantop at the Niels Bohr Institute.


“We managed to produce a nanomembrane that is only 160 nanometers thick and with an area of more than 1 square millimetre. The size is enormous, which no one thought it was possible to produce,” explains Assistant Professor Søren Stobbe, who also works at the Niels Bohr Institute.


12-01 :: January 2012


Koji Usami shows the holder with the semiconductor nanomembrane. The holder measures about one by cm, while the nanomembrane itself has a surface area of 1 by 1mm and a thickness of 160nm. © Ola J. Joensen


K. Usami, A. Naesby, T. Bagci, B. Melholt Nielsen, J. Liu, S. Stobbe, P. Lodahl & E. S. Polzik: Optical cavity cooling of mechanical modes of a semiconductor nanomembrane, In: nature physics AOP, January 22, 2012, DOI:10.1038/ nphys2196:


http://dx.doi.org/10.1038/nphys2196


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97