This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-04 :: April/May 2011


nanotimes News in Brief


chers then generate an inverse tool that they use as a die. A die like this can then be used to launch mass production of the lenses: simply take a glass substrate, apply liquid polymer, press the die down into it and expose the polymer layer to UV light. In a process similar to the dentist’s method of using UV light to harden fillings, here, too, the polymer hardens in the shape the die has printed into it. What remains are tiny lenses on the glass substrate. “Because we can mass-produce the lenses, they’re really pretty low-cost,” Wippermann adds.


Researchers have already produced a first proto- type and will be showcasing it at the LASER World of PHOTONICS trade fair in Munich, from May 23-26. Boasting an image size of 36 x 24 mm², this microscope can capture matchbox-sized objects in a single pass. It will be at least another one to two years before the device can go into series produc- tion, according to the researcher. The spectrum of applications is diverse: with this technology, even documents can be examined for authenticity.


STM image (50 x 50 nm2 http://www.iof.fraunhofer.de ) of organic molecules. Coloring indicates variable spin orientation. © CFN


71


as they allow for the production of very small and highly efficient magnetic field sensors for read heads in hard disks or for non-volatile memories in order to further increase reading speed and data density.


For the first time, a team of scientists from German KIT and the Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) have now suc- ceeded in combining the concepts of spin electro- nics and molecular electronics in a single compo- nent consisting of a single molecule. Components based on this principle have a special potential,


Use of organic molecules as electronic components is being investigated extensively at the moment. Miniaturization is associated with the problem of the information being encoded with the help of the charge of the electron (current on or off). However, this requires a relatively high amount of energy. In spin electronics, the information is encoded in the intrinsic rotation of the electron, the spin. The advantage is that the spin is maintained even when


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93