This page contains a Flash digital edition of a book.
Performance of a Silicon Drift Detector


Figure 7: Spectrum for Mn collected with the 3.2-ms time constant at 40-percent DT and pulse pile-up corrected spectrum calculated by correction routine.


point for the indicated input count rate depended on the average X-ray energy being processed. In contrast to manganese at 20 kV, a 50-percent higher saturation value for the count rate was measured for aluminum at 10 keV, indicating that the problem may be related to processing larger (and therefore longer) current pulses from the SDD.


To demonstrate the efficacy of the SDD in X-ray micro-


analysis, elemental mapping of the fine-scale microstructure of a CMSX4 superalloy was performed by spectrum imaging at both 15 and 5 kV (top and bottom rows in Figure 9, respectively). Te BSE images and corresponding X-ray maps shown in Figure 9 (100 × 128 pixels) reveal the primary and secondary g’ phase (appears dark in BSE images) surrounded by g phase (appears bright in BSE images). Te X-ray maps reveal the relative elemental distribution of Al, Cr, and Re for the two phases. Te maps were acquired at either condition (1) 15 kV, 8 nA, 183-kc/s input, in ~9.6 min at 1.6 ms TC, 50-percent DT or condition (2) 5 kV, 6.8 nA, 60-kc/s input, in 8.6 min at 1.6 ms TC, 19-percent DT. It should be pointed out that for the 5-kV Cr elemental map, the Cr L peak, rather than the Cr K peak, was used. As would be expected, the spatial resolution of the maps is significantly improved for the 5-kV accelerating voltage as a result of the decrease in the excited volume. Tis is evident when compared with the increased “blurring” observed in the 15-kV elemental maps of the finely intermixed g′ + g areas (for example, Al, Cr, and Re maps). It is evident that the combination of the high-brightness


Figure 8: Input count rate for Mn standard at 20 kV as a function of incident probe current. Indicated and calculated values are input count rate displayed during acquisition and that calculated from a ratemeter function after acquisition, respectively.


2011 May • www.microscopy-today.com the


FEG of the JEOL 6500F SEM, together with the high collection efficiency and high count rate capability of the SDD permits elemental mapping to be performed at speeds where instrumental problems such as specimen image driſt do not degrade the spatial resolution, even at lower accelerating voltages where the reduced excited volume gives improved


45


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76