This page contains a Flash digital edition of a book.
Performance of a Silicon Drift Detector


Figure 2: Spectra of the Mn standard as a function of time constant (TC) at 20 kV and ~22-percent DT. The Mn Ka peaks are normalized to 4× full scale. Net counts are given for the Mn Ka peak for 100 clock second acquisition.


is associated with the pulses (X-rays) that are successfully processed by the detector electronics and placed in the acquired spectrum.


Results Te SDD provides ~3.5× the geometric collection of the


previous conventional 10-mm2 Si(Li) detector. As the SDD has a 3× larger active area relative to that of the nominal 10-mm2 Si(Li) detector, the observed ~3.5× increase may be due to small differences in the actual active areas of the two detectors or to slightly different detector-to-specimen distances. Te fast time constants that are permissible because of the low capacitance of the SDD allow spectra to be collected at high input count rates (as high as ~500 kcps). Spectra acquired for the Mn standard at ~22 percent dead time (DT) for six different time constants (0.5–12.8 ms) are compared in Figure 2. In addition to the Mn-Ka, b, and Mn-L peaks, there are spectral artifacts that appear at high count rates and short time constants, such as peak shiſts, peak broadening associated with a loss of energy resolution, high-energy tailing (for example, above the Mn–Ka peak), sum peaks (for example, the 2× peaks near 12 keV), and other pulse pile-up effects. It should be noted that the sum peaks become progressively non-Gaussian in shape for shorter time constants. Tere is a decreased intensity of low-energy X-rays below the Mn L peak, especially at the two fastest time constants. Because the spectra are normalized (Mn Ka to 4× full scale), there is a slight increase in the background at higher input count rates associated with a loss of Mn Ka intensity due to pulse pile-up.


42 Input count rate capability, throughput counts, energy


resolution/stability, energy stability, and spectral artifacts (sum peaks and peak broadening) all impact the quality and quantification of X-ray microanalysis. As such, performance testing is required to identify the operational space for both the detector and the processing electronics that yield spectra of sufficient quality for valid analyses. Te throughput for the Mn standard as a function of


indicated input count rate and time constant is shown in Fig- ure 3. It should be noted that the maximum throughput occurs at progressively lower dead times for faster time constants (higher input count rates). Te maximum throughputs observed occur at 61, 61, 61, 57, 53, and 49 percent dead time with progressively shorter time constants (that is, 12.8, 6.4, 3.2, 1.6, 0.8, and 0.5 ms, respectively). If the detector and processing electronics are processing pulses in an optimized fashion, the maximum throughput should occur at a calculated dead time of ~65 percent [4]. It is presumed that these lower dead time values for maximum throughput are related to either the increased fraction of detector live time lost to detector reset events or to processing electronics problems associated with the high input count rates. A second problem noted in Figure 3 is the saturation


of input count rate for the 0.5-ms time constant at ~500 kcps, even though the last data point was taken with ~24 percent higher probe current than the penultimate data point. Te detection of this effect required the high incident probe currents (~100 nA at 20 kV) that the JEOL 6500F SEM was able


www.microscopy-today.com • 2011 May


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76