This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
WASTEWATER AND ECOSYSTEM FUNCTION


All waterways are connected. The unregulated discharge of wastewater therefore has far reaching implications for the health of all aquatic ecosystems, which threatens to undermine the resilience of biodiversity and the ecosystem services on which human wellbeing depends. One such impact, eutrophication is a major global concern affecting the functioning of marine and freshwater ecosystems. To address these challenges we must apply the principles of integrated ecosystem-based management so that the eco- system services on which we depend can be sustained through the watershed and into the marine environment.


Water quality changes at the first point of extraction or use, whether this is the impact of livestock production, release of nu- trients and sedimentation through deforestation, or the myriad of agricultural, industrial and urban activities taking place in the watershed all the way to the coastal zone and open ocean via rivers, ground water, aquifers and storm water run-off. These changes can impact aquatic environments in the following ways:


Mechanical impacts


The impact of water extraction can influence water quality through changes in sediment loading and thermal stress which can change the physical environment, increasing turbidity or scouring and in turn affect biodiversity. For example, changes in sediment loading of rivers can impact downstream habitats that provide ecosystem services of waste and nutrient assimi- lation. Many aquatic organisms and habitats such as bivalves, mangroves, salt marshes, fresh water marshes and sea grasses have a natural capacity to assimilate a certain amount of pol- lutants, such as nitrates and phosphates. Changes in sediment supplies can result in either smothering of sea grasses and coral reefs, or if restricted reduce the essential supply required for the accretion of coastal wetlands, resulting in the decline of these critically important and sensitive habitats.


Eutrophication


Eutrophication is one of the most prevalent global problems of our time. It is a process by which lakes, rivers, and coastal


waters become increasingly rich in plant biomass as a result of the enhanced input of plant nutrients mainly nitrogen and phosphorus in general originating from agricultural and ur- ban areas, through the soil or directly into rivers and oceans (Gilbert, 2008, Nyenje et al, 2010). The impacts of eutrophi- cation can result in profound environmental change and im- pact the ecological integrity of aquatic systems e.g. Agricul-


43


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88