This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
WASTEWATER, FOOD SECURITY AND PRODUCTION


Agriculture is the single largest user of water. This sector uses an estimated 70 per cent of total global fresh water (Appelgren, 2004; Pimentel and Pimentel, 2008), returning the ma- jority of this water back to the system. Where agriculture takes place in upper catchments, it may be the first cause of contamination in the water basin. However, agriculture also takes place downstream, where the water may already be polluted by other human activities that result in domestic and industrial waste. Hence there is a complex relationship between water quality, agriculture and food quality, which is in turn linked to human and ecological health.


Impact of food production practices on water quality Deterioration of water quality caused by agricultural practices can be addressed by optimizing water use, irrigation practices, crop selection and reducing evaporation, as well as cutting the application of nitrogen and phosphorus fertilizer, and pesticides. It is also necessary to consider the opportunities and threats posed by the reuse of wastewater in achieving these goals.


Irrigation has enabled crop yield to increase by up to 400 per- cent (FAO, 1996) and is one of the practices that has enabled production to keep up with the increased food demands of a growing population, increasing yield by 2.5 times (Kindall and


Pimentel, 1994). The daily drinking water requirement per person is 2–4 litres, but it takes 2 000 to 5 000 litres of wa- ter to produce one person’s daily food (FAO, 2007). Water re- quirements to produce different food stuffs vary hugely (Fig- ure 10). Increased livestock production and associated meat processing consumes large quantities of water and produces significant amounts of contaminated wastewater. Hence, re- ducing meat production will also affect water availability in many regions.


Water originating from the snow and ice in the Kush Hima- layas and Tibetan Plateau currently sustains over 55 percent


30


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88