This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
nols, cresols, naphthalene, anthracene and complex organic compounds such as polycyclic aromatic hydrocarbons (PAH). Water is also used as a lubricant in industrial machinery and can become contaminated with hydraulic oils, tallow, tin, chro- mium, ferrous sulphates and chlorides and various acids.


Industry has a primary responsibility to reduce the production of toxic waste. Many incentives are based on voluntary mea- sures, but governments and the public sector must play a cen- tral role in monitoring, regulating and also implementing pol- icy to reduce toxic waste. Industrialized nations have generally recognized that in theory it is simpler and more cost-effective to deploy cleaner production processes than to clean up large- scale industrial pollution. Pollution from wastewater depreci- ates land values, increases municipal costs and causes numer- ous adverse biological and human health effects, the cost of which are difficult to calculate.


How to get industry to clean up its act?


In many countries the responsibility for industrial wastewater treatment falls on ordinary taxpayers. In the absence of a user- pays system for pollution control, large volumes of contami- nated industrial wastewater end up in municipal sewage treat- ment plants, which are expensive to construct, operate and maintain. The Netherlands introduced a series of incentives to polluters to reduce pollution at source, rather than opting for the more expensive end-of-pipe solution of public sewage treatment. This approach has been cost-effective in reaching water quality targets (the Urban Waste Water Treatment Di- rective). In contrast other European member states who have not introduced a polluter-pays system or have been slow to adopt one have consequently not reached targets (e.g. France) or have paid a high price to do so (e.g. Denmark)(EEA, 2005).


Bottled water Before Mining


Rainfall filtering through soil


Sulfide Surface runoff


Filtering soils Groundwater


The problem of poor water quality in many urban centres has been one of the factors that have lead those who can afford it to turn to bottled water. Bottled water sales worldwide have increased rapidly with global consumption now at more than 200 000 million litres a year. While the USA is the biggest consumer of bottled water, China has shown the strongest growth, increasing consumption by more than 15 per cent since 2003 (Beverage Marketing Corporation). The cost of producing bottled water is a serious concern. In the United States it is estimated that the production of the bottles alone requires 17 million barrels of oil a year and it takes three litres of water to produce one litre of bottled water


After Mining Surface runoff Mine Sulfide


Filtering soils Groundwater


OXYGEN + WATER + SULPHIDE = SULFURIC ACID Heavy Metals Fish Mortality


Extraction decreases groundwater depth and natural filtration, and increases the groundwater contamination.


38


(Source: Pacific Institute http://www.pacinst.org/topics/water_and_ sustainability/bottled_water/bottled_water_and_energy.html)


 Figure 13: Mining effects on rainfall drainage. Acid Mine Drainage (AMD) is the number one environmental problem facing the mining industry. AMD occurs when sulphide-bearing minerals in rock are exposed to air and water, changing the sulphide to sulphuric acid. AMD can devastate aquatic habitats, is difficult to treat with existing technology, and once started, can continue for centuries (Ro- man mine sites in Great Britain continue to generate acid drainage 2 000 years after mining ceased (Mining Watch Canada, 2006)).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88