Drug Delivery
Discovery and development of inhaled biopharmaceuticals
With the rapid generation of biological screening data and the potential for innovative selection of compounds for screening, the importance of multi- vendor collaborations together with improvements in automation has never been greater in terms of helping the drug discovery community as a whole.
By Dr Simon Moore, Dr Kirsty Harper and Dr Sylwia Marshall
T
he creation and subsequent development of inhaled biologics has become highly signifi- cant as it is now the route of choice for the delivery of numerous drugs. This is especially the case with biopharmaceuticals developed for the treatment of respiratory diseases. Primary drivers for this include the strong advantages that inhaled biologics have over parenteral routes. These include faster onset of action due to the large surface area (80-120m2) and good vascularisation of the lung; avoidance of degradation in the gastrointestinal tract and first pass effect improved therapeutic index due to targeted delivery requiring lower doses (with potentially fewer side-effects); improved patient compliance as it is more convenient, less intrusive and relatively comfortable for the patient; and, in some cases, has improved stability. Historically, challenges such as high drug requirement, manufacturing costs and stability issues have hindered the development of inhaled biopharmaceuticals. However, technological advances addressing these concerns are now facili- tating the development of such modalities. Pulmozyme® was one of the initial marketed inhaled biopharmaceuticals to move successfully through discovery and development to obtain
54
approval in 1993 for use in the treatment of cystic fibrosis. There have been notable developments since then, with the field continuing to grow signif- icantly. Currently, there are in excess of 40 inhaled biopharmaceuticals in the public domain that have passed through the discovery stage and which are now in the early phase of development. The result of these discovery and development successes over the course of the last decade is that the percentage of biopharmaceuticals in the global pipeline has grown from 30% in 2010 to as much as 42% in 2017. Moreover, total revenues from their sale increased from 17% of all prescription drugs in 2010 to 26% in 2017, with the figures expected to reach as high as 30% by 2022. There is also strong likelihood that inhaled biologics will also make a significant contribution to the level of growth that has been projected.
There are a significant number of differences between new chemical entities (NCEs) and biolog- ics (Figure 1) and these heavily influence the over- all discovery and development strategies that are established including early-stage non-clinical safety assessment. This article highlights some of the key considerations for the development of inhaled bio- pharmaceuticals.
Drug Discovery World Winter 2017/18
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72