search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Drug Discovery


References 1 Doench, JG, 2018. Am I ready for CRISPR? A user’s guide to genetic screens. Nature Reviews Genetics, 19(2), pp.67-80. Available at: http://dx.doi.org/10.1038/nrg.2017.97. 2 Aguirre, AJ et al, 2016. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discovery, 6(8), pp.914-929. 3 Beerli, RR et al, 1998. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proceedings of the National Academy of Sciences of the United States of America, 95(25), pp.14628-33. 4 Qi, LS et al, 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), pp.1173-1183. 5 Larson, MH et al, 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature protocols, 8(11), pp.2180-96. 6 Bikard, D et al, 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41(15), pp.7429- 7437. 7 Ji, W et al, 2014. Specific Gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synthetic Biology, 3(12), pp.929-931. 8 Gilbert, LA et al, 2013. XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2). 9 Mali, P et al, 2013. RNA-guided human genome engineering via Cas9. Science. 10 Cho, SW et al, 2013. Targeted genome engineering in human cells with the Cas9 RNA- guided endonuclease. Nature Biotechnology. 11 Perez-Pinera, P et al, 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 10(10), pp.973-976. 12 Maeder, ML et al, 2013. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 10(10), pp.977-979. 13 Farzadfard, F, Perli, SD and Lu, TK, 2013. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2(10), pp.604-613. 14Tanenbaum, ME et al, 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3), pp.635-646. 15 Chavez, A et al, 2015. Highly efficient Cas9- mediated transcriptional programming. Nature Methods, 12(4), pp.326-328. 16 Konermann, S et al, 2014. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), pp.583-588. Available at: http://www.nature.com/doifinder/10.1038/nature 14136.


17 Gilbert, LA et al, 2014. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell, 159(3), pp.647-661. 18 Shalem, O et al, 2014. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343(6166), pp.84-87. 19Wang, T et al, 2013. Genetic Screens in Human Cells Using the CRISPR/Cas9 System. Science, (December), pp.1-8. 20 Koike-Yusa, H et al, 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology. 21Tzelepis, K et al, 2016. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Reports, 17(4), pp.1193-1205. 22Tsherniak, A et al, 2017. Defining a Cancer Dependency Map. Cell. 23 Mendelsohn, BA et al, 2018. A high- throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure, Available at: http://dx.plos.org/10.1371/journal.pbio.2004624. 24 Parnas, O et al, 2015. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 162(3), pp.675-686. Available at: http://dx.doi.org/10.1016/j.cell.2015.06.059. 25 Adamson, B et al, 2016. A Multiplexed Single- Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell, 167(7), p.1867-1882.e21. 26 Datlinger, P et al, 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nature Methods, 14(3), pp.297-301. 27 Dixit, A et al, 2016. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell, 167(7), p.1853-1866.e17. Available at: http://dx.doi.org/10.1016/j.cell.2016.11.038. 28 Jaitin, DA et al, 2016. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell, 167(7), p.1883- 1896.e15. Available at: http://dx.doi.org/10.1016/j.cell.2016.11.039. 29 Strezoska, Ž et al, 2017. High-content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries. Journal of Biotechnology, 251(January), pp.189-200. 30 Hultquist, JF et al, 2016. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Reports, 17(5), pp.1438-1452. Available at: http://dx.doi.org/10.1016/j.celrep.2016.09.080.


58


Drug Discovery World Fall 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72