Drug Discovery
References 1 Doench, JG, 2018. Am I ready for CRISPR? A user’s guide to genetic screens. Nature Reviews Genetics, 19(2), pp.67-80. Available at:
http://dx.doi.org/10.1038/nrg.2017.97. 2 Aguirre, AJ et al, 2016. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discovery, 6(8), pp.914-929. 3 Beerli, RR et al, 1998. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proceedings of the National Academy of Sciences of the United States of America, 95(25), pp.14628-33. 4 Qi, LS et al, 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), pp.1173-1183. 5 Larson, MH et al, 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature protocols, 8(11), pp.2180-96. 6 Bikard, D et al, 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 41(15), pp.7429- 7437. 7 Ji, W et al, 2014. Specific Gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synthetic Biology, 3(12), pp.929-931. 8 Gilbert, LA et al, 2013. XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2). 9 Mali, P et al, 2013. RNA-guided human genome engineering via Cas9. Science. 10 Cho, SW et al, 2013. Targeted genome engineering in human cells with the Cas9 RNA- guided endonuclease. Nature Biotechnology. 11 Perez-Pinera, P et al, 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods, 10(10), pp.973-976. 12 Maeder, ML et al, 2013. CRISPR RNA-guided activation of endogenous human genes. Nature Methods, 10(10), pp.977-979. 13 Farzadfard, F, Perli, SD and Lu, TK, 2013. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synthetic Biology, 2(10), pp.604-613. 14Tanenbaum, ME et al, 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 159(3), pp.635-646. 15 Chavez, A et al, 2015. Highly efficient Cas9- mediated transcriptional programming. Nature Methods, 12(4), pp.326-328. 16 Konermann, S et al, 2014. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), pp.583-588. Available at:
http://www.nature.com/doifinder/10.1038/nature 14136.
17 Gilbert, LA et al, 2014. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell, 159(3), pp.647-661. 18 Shalem, O et al, 2014. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science, 343(6166), pp.84-87. 19Wang, T et al, 2013. Genetic Screens in Human Cells Using the CRISPR/Cas9 System. Science, (December), pp.1-8. 20 Koike-Yusa, H et al, 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology. 21Tzelepis, K et al, 2016. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia. Cell Reports, 17(4), pp.1193-1205. 22Tsherniak, A et al, 2017. Defining a Cancer Dependency Map. Cell. 23 Mendelsohn, BA et al, 2018. A high- throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure, Available at:
http://dx.plos.org/10.1371/journal.pbio.2004624. 24 Parnas, O et al, 2015. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell, 162(3), pp.675-686. Available at:
http://dx.doi.org/10.1016/j.cell.2015.06.059. 25 Adamson, B et al, 2016. A Multiplexed Single- Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell, 167(7), p.1867-1882.e21. 26 Datlinger, P et al, 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nature Methods, 14(3), pp.297-301. 27 Dixit, A et al, 2016. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell, 167(7), p.1853-1866.e17. Available at:
http://dx.doi.org/10.1016/j.cell.2016.11.038. 28 Jaitin, DA et al, 2016. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell, 167(7), p.1883- 1896.e15. Available at:
http://dx.doi.org/10.1016/j.cell.2016.11.039. 29 Strezoska, Ž et al, 2017. High-content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries. Journal of Biotechnology, 251(January), pp.189-200. 30 Hultquist, JF et al, 2016. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Reports, 17(5), pp.1438-1452. Available at:
http://dx.doi.org/10.1016/j.celrep.2016.09.080.
58
Drug Discovery World Fall 2018
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72