Drug Discovery
Figure 3
Arrayed CRISPR screening leverages the power of
synthetic crRNA to examine the specific effects of
modulation of a gene in a
single well. This can be done with something as simple as
survival or allow for extremely complex multiparametric high- content analysis to elucidate critical cellular behaviours.
genetic screening with single cell RNA sequencing (scRNA-seq)25-28. Perturb-seq, CRISP-seq and CROP-seq provide methods
that enable
researchers to directly link individual CRISPR- imposed genetic perturbations to a highly complex gene expression profile at the single cell level. Comparing the transcriptomes of many cells in parallel enables the comprehensive assessment of subpopulations within a heterogeneous group of cells and can provide mechanistic information on which genetic perturbations influence the pheno- types measured. These techniques even further expand the potential impact of CRISPR-based screens to a level where one can be unbiased in the scope of the phenotype evaluated as a consequence of each perturbation, creating the opportunity to study highly-complex diseases and exploit the ben- efits of pooled CRISPR screening analysis.
56
Arrayed phenotypic CRISPR screening Functional genomic screening in arrayed format offers the possibility to more directly explore com- plex functional assays or powerful phenotypic readouts, such as high-content analysis, that are less compatible with pooled screening approaches. Arrayed loss- or gain-of-function screens using CRISPRko and CRISPRa reagents offer alternative means to perturbing gene function compared to siRNA or cDNA overexpression reagents. An important distinction of CRISPRko/a to RNAi, however, is that cells also require Cas9 (or dCas9) present in the cells, adding an extra element to the screening procedure. This can be achieved by gen- erating a stable cell line with Cas9 using a lentivirus prior to screening, or by transient intro- duction of either Cas9 plasmid, mRNA or protein to the cells (see Figure 3).
Drug Discovery World Fall 2018
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72