search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Drug Discovery


Figure 3


Arrayed CRISPR screening leverages the power of


synthetic crRNA to examine the specific effects of


modulation of a gene in a


single well. This can be done with something as simple as


survival or allow for extremely complex multiparametric high- content analysis to elucidate critical cellular behaviours.


genetic screening with single cell RNA sequencing (scRNA-seq)25-28. Perturb-seq, CRISP-seq and CROP-seq provide methods


that enable


researchers to directly link individual CRISPR- imposed genetic perturbations to a highly complex gene expression profile at the single cell level. Comparing the transcriptomes of many cells in parallel enables the comprehensive assessment of subpopulations within a heterogeneous group of cells and can provide mechanistic information on which genetic perturbations influence the pheno- types measured. These techniques even further expand the potential impact of CRISPR-based screens to a level where one can be unbiased in the scope of the phenotype evaluated as a consequence of each perturbation, creating the opportunity to study highly-complex diseases and exploit the ben- efits of pooled CRISPR screening analysis.


56


Arrayed phenotypic CRISPR screening Functional genomic screening in arrayed format offers the possibility to more directly explore com- plex functional assays or powerful phenotypic readouts, such as high-content analysis, that are less compatible with pooled screening approaches. Arrayed loss- or gain-of-function screens using CRISPRko and CRISPRa reagents offer alternative means to perturbing gene function compared to siRNA or cDNA overexpression reagents. An important distinction of CRISPRko/a to RNAi, however, is that cells also require Cas9 (or dCas9) present in the cells, adding an extra element to the screening procedure. This can be achieved by gen- erating a stable cell line with Cas9 using a lentivirus prior to screening, or by transient intro- duction of either Cas9 plasmid, mRNA or protein to the cells (see Figure 3).


Drug Discovery World Fall 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72