search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
candidates for reuse. ‘With Maitre Coq, another Imoca team using our own moulds before we had even left the shed it was like hot bunking during an ocean race,’ Foxall says. ‘It’s an efficient use of boatyard labour, energy and the mould itself. By reusing a mould Maitre Coq saved 171 tC02e (metric tons of carbon emissions), more than 30 per cent of their overall footprint.’


an extra mandate from our sponsors, 11th Hour Racing, to go above and beyond to see what’s possible.’


Put sustainability in the design brief


‘It needs to start with the naval architect,’ says Etienne Le Pen, who conducted the on-site research for the team’s lifecycle analysis as part of his masters degree. ‘It is the architect who designs the boat and the engineer who decides what materials to use. By the time the plans get to the boatyard everything is pretty “locked in”. With about 70 per cent of the build footprint due to the ubiquitous use of carbon fibre and epoxy, the ability to make change is largely in the hands of policy makers and class rules.’ Design offices should also be on a 100 per cent renewable energy tariff. ‘Computing power accounts for 3-5 per cent of the total build footprint,’ says Amy Munro, the team’s sustainability officer. ‘That’s more than the footprint of transport logistics in the build phase and it’s only going to increase. So it’s important to consider energy use for things like CFD. What energy are the supercomputers running on?’ It is key to design and build for longevity and reuse. ‘To a certain extent this principle is already embedded in the philosophy of the Imoca class,’ Foxall says, ‘and before we discuss other, more complex points to reduce impacts, reuse is singularly the most effective way to minimise all impacts. Simply put, a boat or component that lasts twice as long has half the footprint, and this is the scale of reductions we need.’


Build in the right place One of the advantages for 11th Hour Racing Team choosing to build at


66 SEAHORSE


CDK Technologies, in Brittany was the significant reduction in transport footprint. ‘About 90 per cent of the materials came from suppliers within a 50km radius of the yard,’ says CDK production manager Michel Ollivier. ‘An important first step was to conduct a full infrastructure audit, which highlighted the significant work that CDK Technologies had already done to improve their sustainability as a result of their staff asking them to do it,’ Foxall says. ‘As part of that process we were reassured to find a well-developed material sourcing, resource recovery and waste management plan. The outcome which is quite exceptional in the boatbuilding world is that almost no waste went to landfill from CDK Technologies.’


Focus on plugs and moulds ‘Half of the total footprint of a boat coming out of the build shed is in the plug and moulds,’ Foxall says. ‘We can make a difference here. In the next build cycle we should no longer be using male plugs, and alternative materials such as flax and/or recycled carbon can be used in non-structural parts of the moulds.’ Morgan agrees. ‘The mould doesn’t go sailing,’ he says. ‘There should be a rule that you have to build it out of recycled carbon. Given the timing of The Ocean Race, it wasn’t feasible for us with any of the suppliers but we’ll definitely look to be doing it in the future.’ Hull skins for several inshore racers have already been built using recycled carbon moulds, but for CDK’s Ollivier the timeline of this build did not allow time to explore this further. This again underlines the need for class rules to mandate these solutions for designers and builders.


Hull and deck moulds are obvious


Above: the team sent a broken foil off to be recycled into unidirec- tional carbon fibre tape, which could be a game- changer for sustainable boatbuilding in the future. Top right: carbon fibre is supplied to CDK on these cardboard tubes. The yard is saving €4,000 a year and avoiding a tonne of greenhouse gas emissions by sending them back to the supplier to be refilled, rather than binning them


Use new materials in careful steps


‘You can’t usually save weight, save money, save carbon footprint and increase usability all in one,’ Morgan says. ‘Balancing those factors is what I do. We didn’t want to introduce a core, a fibre, a resin all in one. If we try and do everything in one go then we no longer have a baseline. If something delaminates, is it the fibre, is it the resin, is it the core? So for the first parts we made we used resin from Gurit and Nomex core – both very well known – and we used flax for the fibre. That went very well. For the next move, making fully recycled cradle splashes, I said let’s use recycled carbon, recycled PET core, and let’s use the best bio resin we can.’


Recycled PET core material has a real future, Morgan says. ‘Not in the structure of a hull just yet, but it sands well, machines well. It has forming capabilities for curved furniture panels, its adhesion is good, and it doesn’t seem to want to delaminate.’ He is unconvinced, however, about bamboo fibre: ‘Any product that won’t absorb resin scares me. It’s too hard to use. On the other hand we did incorporate some nice non-structural components made out of flax, which allowed us to pilot the new Imoca rule incentivising the use of alternative materials on board.’


Find a use for carbon offcuts Offcuts from 11th Hour Racing Team’s Mālama and other new builds at CDK Technologies are being recycled for use in the building industry. The snag here is that location is key for recycling. With a big aircraft factory as well as the yacht racing industry, west Brittany is one of the few places where enough carbon


LOU-KEVIN ROQUAIS/11TH HOUR RACING


AMORY ROSS/11TH HOUR RACING


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122