search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Cover story


Component misalignment misadventures


Obsolescence management begins at the design and product defi nition phases U


nderstanding the risks associated with component selection during the design and product defi nition


phases requires a deep understanding of the timeline for long-term system development and when components are introduced by the semiconductor company. Market misalignment occurs when a long-term system is designed using short-term market products or already mature products. Architecture misalignment happens when the choice of processor architecture is clearly close to the end of life, usually when the cost of architectural change has postponed an inevitable future. Board design misalignment results after board layouts are done with knowingly, densely packed, shifting commodity products. Component selection during development is a deciding factor for potential premature product redesigns and requalification. Component choices are frequently influenced by the ongoing progress of product development, with the aim to maximise the potential of older software and hardware solutions.


Market misalignment: There are times when the easy or most efficient component selection is the wrong choice, due to market misalignment. This scenario could be feasible if there is a planned and budgeted last-time purchase within a few years of selecting the components; however, this is seldom the situation. For example, graphic driver products have a very short lifetime in comparison to military or commercial avionics displays. Opting for a PC-orientated component in a market where the sole purpose of those components is product development will lead to obsolescence even before the fi rst production units are shipped for long-term systems. When it comes to choosing a graphics driver product upfront, it is crucial to consider the long-term system cost and allocate a budget for an early last-time-buy. This is necessary to safeguard military or commercial avionics displays and avoid obsolescence in a market where PC-orientated components may not meet the requirements of product development.


Architecture misalignment: Commercial avionics has long settled on the PowerPC processor multi-core architecture, due to the control for multi-core operation and speculative execution across multiple processor cores. The existing multi-core PowerPC products have been certifi ed for commercial avionics and software development is proven. However, the end of the PowerPC architecture is on the horizon. It is only a matter of time before the commercial avionics market adopts ARM or RISCV as their architectures. Every single PowerPC- based product being designed today is already on a processor product line that is over a decade old.


Board design misalignment: There is always the temptation to pack DRAM as tightly as possible. Many systems have variable amounts of DRAM, to enhance their product or to provide tiers within a product family. Packing that DRAM into as small of a space as possible could be an advantage. However, the challenge with long-term systems lasting 15-20 years is that DRAM technology will evolve signifi cantly within that time. It is crucial to anticipate this change by strategically designing board layouts upfront, minimising needs for future modifi cations.


Market misalignment: Memory products are designed for short-term systems. The largest memory suppliers no longer stock DDR3. Coincidently, DDR3 is the primary memory type supported by the latest PowerPC product. Designing long-term systems without a long- term memory product plan upfront is an issue. Memory has been a fast- moving product for decades. Memory innovations come at a rapid pace to


06 October 2023 www.electronicsworld.co.ukw


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46