search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Medical Electronics


Global survey reveals the state of diagnostic wearables and the future of medical monitoring


Molex, a global electronics company and connectivity specialist, has announced the results of a global survey of design engineering stakeholders to identify market drivers impacting the development of diagnostic wearables that enable patients, caregivers and consumers to monitor and analyze data regarding health status


S


urvey respondents cited high expectations for consumer use and innovation in wearables for sport and fitness, wellness and medical-monitoring applications. Also identified were regulatory, technology and adoption barriers that must be cleared to fuel advancements of increasingly connected, smaller and more powerful health, fitness and medical-monitoring wearables. “There’s an interesting convergence taking place across the diagnostic wearables landscape as medical device companies and tech innovators strive to bring game-changing products to market,” said Tyson Masar, global director, Medical, Molex. “Emerging applications dictate new requirements, which is why design engineers must understand the needs of all stakeholders and how they affect decisions across the entire product lifecycle— from early-stage device design concepts to commercialization at scale, and every step in between.”


Molex and Avnet commissioned Dimensional Research to conduct the Diagnostic Wearables: The Future of Medical Monitoring global survey in August 2022, polling 603 qualified individuals in design engineering roles with responsibility for diagnostic wearables. A variety of questions were asked to understand the pace of adoption and impact of a growing ecosystem of advocates while assessing the challenges and tradeoffs impeding product delivery.


Advocacy and acceptance on the rise A growing roster of advocates are encouraging increased use of diagnostic wearables, led by patients and consumers (61%), doctors and other medical professionals (47%) along with in-home caregivers (44%). Unsurprisingly, insurance providers, some doctors and other medical professionals, as well as medical technicians, remain hesitant or object to increased use.


Within the next five years, however, design 38 October 2022


engineers report high expectations for direct consumer adoption of devices to support obesity control (61%), posture sensing and correction (59%), breath-based disease detection (51%), reproductive health monitoring (50%) and infectious disease monitoring (49%). Examples of new medical wearables expected to be available within five years include devices for tracking diabetes, sleep monitoring, gait analysis, mobile CT scanning, genetic abnormalities and vision deterioration.


Design challenges persist Despite optimism for the future, nearly all participants identified design challenges, such as consumer expectations for ease of use (42%), the need for simple user interfaces and complete documentation (41%), design difficulties in uncontrolled homecare settings (40%) and complexity of regulatory approval processes (34%). Areas that also impede design processes include cost (38%), durability


Components in Electronics


(37%), power (35%), miniaturization (33%), data capture (30%) and connectivity (30%). In fact, three quarters of those polled report that connectivity constraints impact current abilities to collect relevant data for tracking and analyzing health.


According to those polled, the top five impediments to designing smaller wearables range from miniaturizing the sensing elements (40%) and making hardware (e.g., connectors) smaller (39%) to power management (32%), signal quality (29%) and thermal management (22%). The top three most reported innovations in materials include biocompatibility, published functional and reliability data for emerging materials, as well as real-world “wear test” simulations.


Energy harvesting ignites interest Overall, respondents were bullish about the potential for harvesting patient energy (e.g., body heat, sweat, heartbeat, movement,


etc.) to power wearable functionality. While acknowledging time and innovation are required to propel this area forward, respondents cited movement (49%), body heat (35%) and sweat (13%) as the most viable sources for energy harvesting.


Collaboration expected to drive innovation worldwide


According to 63% of those surveyed, strong collaboration among industry, government and academic groups is expected to drive the most innovations in diagnostic wearables. While nearly three quarters of respondents from China ranked group collaboration highest in importance, results from participants in the United Kingdom (52%), France (57%) and Germany (59%) were more closely aligned with participants from the U.S. (61%). To read the full report visit:


https://experience.molex.com/electronic- solutions/improving-lives/


www.cieonline.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62