search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Internet of Things


IoT interoperability – Living the dream


With the arrival of cost-effective Satellite IoT (SatIoT), systems integrators are rushing to meet the huge pent-up demand for global solutions that allow asset tracking across the 85 per cent of the planet not covered by cellular networks. They are building fully connected IoT solutions, where mobile assets can be tracked as they move, seamlessly connecting to an array of networks, from Cellular to LoRaWAN, Sigfox, and Satellite. Some are making the promise of the one-size-fits-all approach, relying on future 3GPP standards. Is this a safe bet for systems integrators? While it is technically feasible to use existing terrestrial protocols to communicate with satellites, it is far from optimal in terms of performance. IoT is hugely sensitive to cost and power consumption and such degradations could rapidly derail the IoT business model. Minor differences in performance, like battery life and/or device lifetime, can radically change the viability of the business case. Building intelligent devices capable of seamlessly switching between several technologies, each of them being highly optimized for specific conditions, is the soundest approach. Fabien Jordan, CEO, Astrocast, explains why systems integrators need to explore Astrocast’s proprietary data protocol that has been designed specifically to optimise every aspect of the SatIoT component.


Compelling opportunity 2022 is the year IoT goes truly global, with low cost SatIoT solutions providing the chance to track assets in even the most remote locations across the world for the first time. With the ability to cost effectively connect the 85 per cent of the world not covered by cellular networks, the dream of seamlessly collecting data from assets as they move between networks – from cellular to satellite – is incredibly exciting.


Supply chains can be transformed by continuous tracking of shipping containers. Agriculture revolutionised through remote monitoring of both animals and environmental factors such as moisture, helping to reduce reliance on antibiotics and optimise the use of scarce resources such as water. Environmental understanding and strategies fast-tracked using data from monitoring oceans to understand change.


In the drive to meet the huge pent-up demand for a seamless global IoT solution, however, it is vital to retain focus on the core components of IoT success. These deployments involve tens, even hundreds of thousands of devices, generally in inaccessible locations. Device lifetime and form factor is key to the business case – that means thinking carefully about everything from battery life and size to


30 October 2022


updates, frequency of transmission and antenna design.


Standards debate


This is a new market and the challenge for systems integrators is to achieve integration without compromising performance or undermining the business case. And this is where the debate now lies: should the industry rely on cellular IoT standards only in the hope that they might one day be satellite-compatible


Components in Electronics


and hence minimise device complexity? Or, should they bet on the operational performance benefits of combining the available and highly-efficient proprietary SatIoT data protocols with cellular and LPWAN technologies, making mass scale deployment financially viable for the first time?


In theory, it makes great sense to adhere to industry standards in any technology deployment. It provides application longevity and improves agility.


However, there is little value in taking this approach if performance is fundamentally compromised, especially with such a financially sensitive business case. Right now, there is no standard for SatIoT deployment. The proposed 5G NB-IoT standards are years away from full ratification. On top of that, NB-IoT is real-time only. It doesn’t support store-and-forward operations, which is absolutely critical to have when operating through a network of LEO (Low-Earth


www.cieonline.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62