Sustainable Electronics Article continued from page 45
replace recycling but simply delays it and maximizes the value of the battery. Policies will drive Li-ion battery recycling in some key regions, alongside battery manufacturers looking to domesticate material supply and to shield themselves against supply constraints and fluctuating prices of virgin materials. An important factor to consider is which chemistries are better suited for recycling or repurposing. From a material value perspective, LCO, NMC and NCA chemistries propose much stronger economic value propositions for recycling than LFP (see figure to the right). Whether to repurpose Li-ion batteries for second-life applications or recycle them depends on several factors. LCO batteries are valuable, given the high content of cobalt, but are difficult to collect on a wide scale as consumers have little incentive to do this. NMC and NCA batteries also have high embedded value and are, therefore, more likely to be recycled. LFP batteries are less valuable, and battery manufacturers may incur a gate fee to cover the costs of recycling. This, alongside LFP batteries generally exhibiting a longer cycle life and being inherently safer than NMC/NCA batteries, suggests it
Value that can be extracted from Li-ion batteries with different chemistries. Source: IDTechEx
will be more likely that LFP batteries will be repurposed for second-life applications. Therefore, whether a Li-ion battery is recycled or repurposed depends on the battery source, chemistry, potential policies, materials prices, and any developments in recycling and
repurposing processes that could improve the outlook for either of these routes. Given the high value embedded within NMC and NCA batteries and the nascent stage of the second-life market, the recycling market is expected to grow at a faster
rate. Nevertheless, both second-life Li-ion batteries and recycling are expected to play an important role in managing end-of-first-life Li-ion batteries over the coming years.
www.IDTechEx.com
46 December/January 2024
Components in Electronics
www.cieonline.co.uk
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71