search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
and apply it to detecting the critical parts in sensors, so manufacturers don’t release defective products into the field,” says Polu.


Ensuring Lithium Niobate Wafer Quality


Lithium niobate (LiNbO3) is one of the most versatile and well-developed active optical


materials that is widely used in electro-optics, acousto-optics, nonlinear optics, waveguides, and fiber optic gyroscopes (FOGs). One potential application is for oilfield sensors. Traditionally, in this application, when cutting, separating, and assembling lithium niobate wafers into sensor housing, only a small percentage prove to be good in the field. The challenge is determining which wafers are defective before incorporation into products. For this type of application, the SAM VUE400 from OKOS is ideal to detect bad wafers prior to use in an electro-mechanical device. The medium-sized SAM system designed for lab use or manufacturing floors is traditionally used to detect voids, disbands, cracks, delamination, and internal defects in semiconductor package failure analysis. With an ultrasonic digitizer and digital pulse receiver, the system can repeatably scan with an accuracy of +/-0.5 micron.


The SAM equipment can inspect various items with unique product geometry or sizes, from crystal ingots, wafers, and electronics


deliver a software-driven, ecosystem-based solution,” says Polu. The company’s ODIS Acoustic Microscopy software supports a wide range of transducer frequencies from 2.25 to 230 MHz.


Multi-axis scan options enable A, B, and C-scans, contour following, off-line analysis, and virtual rescanning for metals, alloys, and composites. This results in highly accurate internal and external inspection for defects and thickness measurement via the inspection software.


SAM is being used to assess the physical sensing elements to determine the components are sound before they are assembled into sensors that will be used in critical applications.


packages to miniature physical packaging, metal bar/rods/billets, turbine blades, etc. However, as important as the physical and mechanical aspects of conducting a scan, the software is the key to analyzing the information to produce detailed scans. For this reason, “OKOS decided early on to


Today, manufacturers have the potential to save significant amounts of money per year in oilfield sensors or similar applications by detecting and eliminating defective lithium niobate wafers before use in high-value, electro-mechanical sensors. These savings stem from screening at the wafer level, which prevents packaging and shipping bad products. The total does not even account for substantially improved wafer yields. “The use of SAM takes a well-established testing paradigm in the semiconductor industry for wafers and applies it to very thin metals. This prevents the costly failures of a variety of electro-mechanical sensors in the field,” concludes Polu.


OKOS www.okos.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46