search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Non contact measurement & inspection


racing experience to develop a new product line that gives so-called ‘blue collar’ racers the same advantages that other modern race teams - Indy Car, Le Mans, and CCA - rely on. Today, Hot Products Engineering systems are valued by prestigious teams racing in series that include, NASCAR, American LeMans, MSA, IndyCar, World of Outlaw Sprint & Dirt Late Model, USAC, IMCA, SCORE, 600 Micro-sprint, Bonneville and AMA Motocross.


The AdvAnTAges of Pre-heATing


Race car engines will only achieve peak power at a very specific temperature. An engine pre-heater will ensure that the engine is always within a narrow range of that temperature, so that maximum power will be available right from the start. That ideal temperature depends largely on the type of car being raced. Engine temperature will not only affect racing performance; an insufficiently heated engine can also result in cold-temperature- related engine failure, causing a driver to not even finish the race.


Additionally, cold starts can cause significant engine wear. Pre-heating can save racing teams hard dollars while reducing engine wear, saving on expensive rebuilds, and virtually eliminating the risk of an expensive cold-piston seizure.


LineAr ThermAL exPAnsion


The whole reason we need to let our engine warm up revolves around the concept of linear thermal expansion. An engine is made up of a number of different materials. The piston is made from a certain type of aluminum alloy, the cylinder another type of aluminum alloy, the rings cast iron or steel, the valves from steel, stainless steel, or titanium, and the guides are made from yet another material. Once the engine is started, these components begin to heat up from combustion and friction as they slide back and forth. None of these materials are exactly alike, and because of this they will expand when heated or contract when cooled at different rates. This interaction between material and change in temperature is predictable and linear. When a cold engine is first


Instrumentation Monthly March 2019


Continued on page 24... 23


started the piston heats up and expands first. Heat is transferred from the piston to the rings and then to the cylinder wall. If we rev the engine and generate lots of combustion cycles and increase the


Above: Pete Davis, Hot Products Engineering. Below: Warming up the engine is one of the essential rituals every motor racer performs


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80