search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Sensors & transducers


Selecting eddy current displacement sensors


When selecting a non-contact eddy current displacement sensor, a number of factors need to be considered, including temperature of the target, calibration, target thickness and size, speed of measurements and mounting, says Chris Jones of Micro-Epsilon


A


lthough most engineers are familiar with non-contact eddy current displacement sensors, this article acts as a useful


checklist of the factors that should be considered before specifying a sensor, as well as the benefits and limitations of this measuring principle.


MEasuring prinCiplE The eddy current measuring principle occupies a unique position among inductive measuring methods. The principle is based on the extraction of energy from an oscillating circuit. This energy is required for the induction of eddy currents in electrically conductive materials. A coil is supplied with an alternating current, causing a magnetic field to form around the coil. If an electrically conducting object is placed in this magnetic field, eddy currents are induced, which form a field according to Faraday‘s induction law. This field acts against the field of the coil, which also causes a change in the impedance of the coil. This impedance can be calculated by a controller, which looks at the change in the amplitude and phase position of the sensor coil.


advantagEs There are several distinct advantages of using eddy current measurement sensors. First, measurements are made on a non-contact basis and so are wear-free. Second, the principle offers high precision, high resolution and high temperature stability. The sensors can also be used on both ferromagnetic and non-ferromagnetic materials. The sensors also perform at high speed if required, with some sensor suppliers offering measurement speeds up to 100kHz. With high measurement accuracies and frequency response times, together with an extremely robust design, eddy current sensors enable measurements to be made in tasks where conventional sensors have reached their performance limits.


50 August 2019 Instrumentation Monthly


HarsH EnvironMEnts Eddy current sensors also perform well in demanding, harsh industrial environments where oil, dirt, dust, high pressures and high temperatures are present. Some suppliers, for example, offer robust eddy current sensors with increased protection (to IP67) for harsh environments and pressure-resistant versions that withstand pressures up to 2,000 bar.


CustoM CapabilitiEs It is also important to look for a supplier that offers a wide range of different eddy current sensor designs, which will enable the optimal sensor to be selected for a particular application. Applications for eddy current displacement sensors are often found where the standard versions of the sensors and


the controller are performing at their limits. For these special tasks, consider sensor suppliers that can modify the sensor according to your specific individual requirements. Typical modifications requested include modified sensor designs, miniature sensors (2mm to 4mm in diameter), target calibration, mounting options, cable lengths, modified measuring ranges and sensors with integrated controller.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82