search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Test & measurement


Still image from video of USC Rocket Propulsion Lab “Graveler II” rocket test


a rocket into space. As part of an unofficial space race among international universities, Tewksbury and his team don’t just want to be the first team to successfully launch; they want to reach an altitude of 100 km (330,000 ft) above sea level with a rocket made up completely of components that they manufacture themselves. They only get to build one or two rockets every year, so testing components on the ground is essential to building viable rockets. As par t of his application to obtain a launch


N


window from the Federal Aviation Administration (FAA), Tewksbury needed to validate that his space-shot rocket could safely make the trip. Par t of that validation process took place at a Mojave Deser t test site. Tewksbury needed to test the integrity of the thermal protection system of the rocket’s motor case as well as the carbon-phenolic nozzle design. “We have to guard the case, which actually can’t survive very high temperatures because it’s carbon fiber,” Tewksbury says. “The biggest new addition to this static fire


was the nozzle. We completely redesigned the nozzle with new materials, new processes,” Tewksbury adds. “We wanted to see how well that performed. We used a special ablative technology on the nozzle to hopefully whisk


BATES Grains still evident after the rocket test


eil Tewksbury and his team at the University of Southern California Rocket Propulsion Lab want to blast


Validating thermal protection before a space-shot launch


How do you gather thermal management data when testing rockets? A team at the University of Southern California Rocket Propoulsion Lab has been using thermal cameras from FLIR Systems to do the job. The company’s thermal cameras provided valuable data at a level unattainable with thermocouples to measure performance of rocket thermal protection system during engine firing


away as much of the heat as possible to protect our thermally sensitive case.” Called Graveller II for “ground” and “traveler,” this was to be a static test of the rocket motor on the ground. In past static tests, Tewksbury relied


on thermocouples to gather thermal management data. Where as thermocouples could provide specific spot data, he needed a solution that could gather more comprehensive data for this test. “We really wanted to see if there were any hot spots both on the case and on the nozzle. We can only use a finite number of thermocouples,” Tewksbury says.


SOLUTION On 17 February 2018, the USC Rocket Propulsion Lab successfully tested Graveler II, the largest composite-cased amateur rocket


FLIR T540 Professional Thermal Camera


motor ever successfully fired to date. The 8inch diameter, 80.5-inch long R-class solid rocket motor delivered a total impulse of 42,000 lbf-sec. Graveler II was fired in a carbon-epoxy motorcase with a carbon- phenolic nozzle, all of which were designed and fabricated by USC students.


26


August 2019 Instrumentation Monthly


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82