search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MEDICAL DEVICES


y providing financial fleibility, s can


alleviate the brden on small biotechs and ensre smoother progress throghot the trial lifecycle. This is especially important dring earlyphase dosefinding stdies, where worloads can change drastically from one month to the net. onthly payments shold reflect the wor performed and not be based on otofthebo algorithms that are sed for laterphase trials. The srge in AI applications represents a


facet of the ecitement srronding this transformative technology. There has been sbstantial capital infl into AI healthcare initiatives. Althogh investment declined from its  pea,  still saw $. billion invested across 5 deals. espite maret challenges, highality projects contine secring sbstantial fnding in , nderscoring the resilience and attractiveness of the AI healthcare sector. owever, these favorable trends do not


garantee companies sccess in achieving sstainable bsiness models. ltimately,


46 | Outsourcing In Clinical Trials


adoption is a ey parameter for evalating sccess after commercial lanch. A great prodctmaret fit is jst the beginning of the healthcare related prodct lanch. eglatory, patient safety, worflow, cost, infrastrctre, hman resorces, and other barriers can prevent hospital implementation of new technologies. nsrprisingly, healthcare adoption of most of the new technologies lags other indstries by 5 years or more. sing AI in radiology, representing most AI


healthcare projects, as an eample only  of radiologists se AI clinically, and  of practices plan to invest in AI tools in the net five years, according to a  poll condcted by the American ollege of adiologys ata cience Institte. To increase awareness and overcome AI implementation barriers, pioneers now share eperiences regarding technical validation, I analysis, data ality, the blac bo enigma, infrastrctre and technical compleities, worflow integration, and ethical implications. owever, even addressing these, withot etra payment and coverage policy for


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72