search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Airside operations Practical countermeasures


Once a drone has been identified, then, what is the best way to remove it from an airspace? A number of technologies have sprung up to answer that question, but many offer questionable efficiency. “When you have an early market, what you typically find is that lots of people go in and talk about all these cool science fiction type scenarios, but most of them aren’t very practical,” says Samani.


The first is fairly straightforward – what Wright refers to as a “ground-based kinetic countermeasure” in the form of an anti-drone net launcher, or indeed, of more traditional firearms. For obvious reasons, though, taking a drone down with a shotgun in the way you’d do with a clay pigeon might not appeal to commercial airport operators. The range with net launchers is typically also quite limited and made more difficult still if the drone refuses to cooperate by hovering in place. Alternatively, anti-drone technology can focus on electronic countermeasures, which are far more versatile. Firstly, they try and interfere with the communication between the drone controller and the vehicle itself. In many cases, when the ground-to- air link is disrupted, the drone will break off and do what Wright refers to as a “RTH” – or “return-to- home”. It’s a simple case, then, for airport security to track the drone as it returns to its owner and catch the offending operator.


Another option is to attack the drone with an electromagnetic pulse, which damages the electronics within a drone and can lead to the affected drones dropping straight from the sky. The most desirable and also the most challenging, however, is a cyberattack on the drone itself. This typically involves attempting to spoof the ground station and take direct control of the drone itself, and steer it into a safe zone where it can be retrieved.


For Samani and Vornik, electronic countermeasures offer the best results. If necessary, both Vornik and Samani will use a jamming solution, which neutralises the drone by severing the connection between the drone and the controller or the drone and the satellite. Both of their companies are also able to estimate the location of the drone pilot, which is a more useful countermeasure, in Vornik’s opinion, because it allows security forces to apprehend the pilot directly. After all, in the case of a bad actor trying to deliberately disrupt an airport’s operations, there’s nothing to prevent them from coming back with another drone the next day. However, using jamming technology in an airport setting does present some challenges. “A drone has to communicate with its remote control,” Samani explains. “And the way that it does is it uses unrestricted frequencies, such as 2.4GHz or 5.8GHz. Now, when I jam the signal of that drone, I’m potentially impacting other systems on the airfield.” This can affect landing gear and radar, which often rely on the same frequencies that jammers use, though


34


precautions are taken to minimise the risk. For this reason, using jamming technology in an airspace requires gaining high levels of permission from government bodies, due to the potential collateral damage. For smaller airports, with lower traffic levels, it is often easier to expand their operating procedures to prepare for potential drone disruption and temporarily halting flights during an incursion.


Start at the beginning


As the Gatwick incident demonstrated, technology can only go so far – at some point, a human being will have to make a decision as to whether or not the threat has been dealt with or if it was never there in the first place. “You’ll need to be really confident in your solution to be able to say, ‘It’s not showing up, so it’s definitely not there’,” says Paul Diestelkamp, head of business development & solutions at Air Navigation Solutions, who experienced the Gatwick incident on the ground at the time, serving as the air navigation services provider. In his opinion, the most important thing is for airports to ensure that they have robust procedures and communications established for dealing with these situations. “People tend to realise that action needs to be taken and suggest ‘Let’s buy some technology’,” he says. “The purchase and cost of equipment is a clear demonstration of action taken that can be used as assurance for the board and other stakeholders to generate the impression [that] the risk is mitigated.” That’s not to say that he believes technology doesn’t have an important role to play, of course, but more that he sees it as “sort of the end of the stick and not the beginning of the process”. For Diestelkamp, rather than focusing on technology to try and keep drones out of airport operations, it would be more beneficial to create measures that make it easier for the public to make their drones known to airspace monitors. “If you want to be able to protect yourself in the longer term, you need to accept that drones are going to be there and you need to integrate them,” he says. Implementing systems that can provide drone users with information regarding how near they are to restricted airspace, and that can alert them if they cross that threshold, would be of huge benefit. So would a system that requires users to opt-in to before they take their drone out, so that they are logged into the relevant systems in nearby airspaces and can be identified without airports having to invest in the sensor technology to do it themselves. Ultimately, drones are here stay, and as they become increasingly inexpensive and more accessible to the general public, the need for airports to protect their airspaces – however they choose to do so – will only continue to grow. The danger of another Gatwick occurring will remain ever-present and require constant vigilance from operators, or the next incident could be even more serious. ●


Future Airport / www.futureairport.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45