search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Coatings & surface treatment


Opposite page: Thomas Scheibel, who was nominated for the European Inventor Award 2018 in the SMEs category.


Left: Artificial spider silk, created by Scheibel, which relies on E. coli reprogrammed/altered with the genes of the common European garden spider.


surveillance mechanisms. Instead, spider silk is essentially shrouded in an invisibility cloak that allows it to hide from the immune system. This property could be useful for implantable medical devices, which are often registered as foreign objects by the body, leading to scar formation, poor healing and discomfort for patients. If you coat the implant in spider silk, reasons Scheibel, the immune system won’t spot it and it won’t be rejected.


The Bayreuth team has recently discovered yet another advantageous quality of spider silk – it can repel microbes. This could have benefits for medical device implantation too, as it currently comes with a widely underestimated risk of infection. Over half of the nearly two million healthcare- associated infections reported by the Centers of Disease Control each year in the US are attributed to indwelling medical devices. Bacteria or fungi can thrive on an implant’s surface, grouping together to form an invisible biological barrier called a biofilm, which cannot easily be removed by antibiotics or cleaning agents. The microbes can then migrate into the adjacent body tissues, interfere with the healing process and cause life-threatening infections.


Smoothing silk


The sterile quality of spider webs isn’t an entirely new discovery. It has been speculated about since ancient times. “Two thousand years ago, people used spider webs as wound coverage devices,” says Scheibel. “They didn’t know why – they just knew it worked.” A more detailed understanding of the specific mechanism behind spider silk’s non-fouling effect was lacking until very recently. “It took us eight years to find out the reason spider webs are


Medical Device Developments / www.nsmedicaldevices.com


microbe-free,” reveals Scheibel, noting that it seems counter-intuitive that cobwebs repel pathogens. Spider webs are composed of proteins, themselves made up of amino acids, which should be a valuable source of nutrition for microbes. To make matters more confusing, the surface of the web’s silk fibres consists of a mixture of proteins and lipids that vary depending on the species of arachnid and the environmental conditions under which the web is formed. This makes it difficult to study the way spider silk can inhibit bacterial or fungal infestation. It is also tricky to produce natural spider silk in the lab. Spiders only make a tiny amount of their robust thread. Luckily, Scheibel has a patented process for reproducing spider silk proteins without having to wrangle any of the pests themselves. It relies on E. coli bacteria that are genetically reprogrammed with genes from the common European garden spider. The modified bacteria are given a feed of beets and sugar cane, which they ferment to produce the raw material for spider silk. That’s just the first step. Spinning this product into the fibres spiders use to make webs is also challenging to replicate in the laboratory – each rope contains over 1,500 silk strands. It is another process that has taken years to perfect, but Scheibel now has a mechanical system that copies the way spiders extrude the thread for spinning their webs. When he finally cracked the technique, he co-founded start-up AMSilk in 2014, which produces spider silk in industrial quantities for various industries, including cosmetics and sportswear. Webs must ward off microbes in one of two ways, figured the researchers. Either the silk fibres themselves contain an antibiotic substance or the web’s molecular structure is the culprit. The team


109


www.epo.org


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133