INFECTION PREVENTION & CONTROL
hygiene. One of the newest ideas in this area builds on the concept of the five moments of hand hygiene that is widely understood and employed in healthcare settings. Studies suggest that somewhere between 20% and 40% HAIs arise when a healthcare worker passes on pathogens from one patient to the next. Pathogens can also be deposited on frequent touch surfaces and survive for extended periods, sometimes months, allowing them to be touched and passed on to other patients. There is a higher risk of acquiring certain pathogens if a room was previously occupied by a colonised or infected patient. All of this helps explain why effective hand hygiene and surface disinfection are important when aiming to prevent infections. However, there is a growing realisation that even with high levels of compliance, the tried and tested methodologies could be improved. Rigorous daily cleaning of all surfaces, but especially those that are likely to be touched by patients or staff, is essential. But in many settings, some of those surfaces are more likely than others to be touched by multiple people throughout the day. Under those circumstances the idea of a once-a-day disinfection could be inadequate and put patients and staff at increased risk. In reality, studies show that with various people coming into a patient’s room during a normal day, a bed rail could be touched around 250 times by nurses, medical staff, clinical and non-clinical staff, and visitors.
The latest thinking is to adopt a more targeted approach. All areas are cleaned and disinfected daily, as before, but additional attention and focus is paid to frequent touch and high-risk surfaces. In practice, this means items such as bed rails, table-tops and light switches are cleaned much more often. Going further, studies suggest that additional disinfection at the point of care (where three elements come together: patient, healthcare worker and care or treatment involving contact with the patient or their surroundings) will help reduce infection rates. This can be distilled into five critical points:
UV-C has long been proven as an effective technology to reduce contamination and the potential for infection. This short-wavelength ultraviolet light kills or inactivates microorganisms by destroying nucleic acids and disrupting their DNA, leaving them unable to perform vital cellular functions.
l Before placing a food/drink on an over-bed table
l After any procedure involving faeces or respiratory secretions within the patient bed space
l Before/after any aseptic practice (wounds, lines, etc)
l After patient bathing (within bed space) l After any object used by/on a patient touches the floor.
The idea is, in effect, to disinfect on demand and clean hands and disinfect surfaces before and after each of these critical moments. Put another way, it is everyone’s job to disinfect, but it is not everyone’s job to disinfect everything, every time. However, to be effective these processes must be simple and accessible so that they can be completed whenever needed. They must also be acceptable to healthcare workers and visitors, for example, the products used should be non-hazardous and non-irritating. Finally, processes must be fast because anything that adds time or becomes a burden is less likely to be done. With hand hygiene and surface disinfection critical to these new, as well as traditional, approaches it follows that there will be innovations in these areas too.
Hand hygiene
The best healthcare sites globally have reduced their infection rates to around 5% through diligence and a rigorous application
of best practice. In the UK the average infection rate is nearer to 10%. The World Health Organization promotes hand hygiene through a number of high-profile initiatives. Its annual Clean Your Hands Day, for example, was established in 2005 and has been a global success. This and related WHO programmes are based around the concept of a multimodal hand hygiene improvement strategy. This incorporates five components, or building blocks, including system change, training, evaluation, awareness and an institutional safety climate that lead to long-term and sustainable improvements. This framework is complemented by the WHO’s focus on the five moments of hand hygiene – the critical times when healthcare professionals should wash their hands: before touching a patient; before a procedure; after body fluid exposure; after touching a patient; after touching patient surroundings.
These recommendations can mean a lot of washing during a normal day. This is not only time-consuming but conventional soaps can strip natural oils which protect the skin, leading to an increased risk of damage through conditions such as dermatitis. Under these circumstances it is sensible to use an alcohol-based hand sanitiser that kills pathogens faster than soap without removing protective oils. Whatever products are chosen, they must be available and ready to use whenever required. Dispensers should be situated conveniently to encourage regular and proper use. At the same time, they should ideally contain enough product to prolong the interval between refills and therefore minimise the risk of outages and reduce necessary restocking burdens. Another way to encourage compliance is to monitor usage. While it is rarely desirable to monitor individuals, it is helpful to know how often a particular dispenser has been used and how much product has been consumed. Knowing how many times a dispenser has been used and comparing this with the number of patient contacts by the clinical and nursing team should give a reasonable indication of whether they are complying with agreed standards. If not, additional awareness and training can be provided and the subsequent change in usage patterns assessed.
80 I
WWW.CLINICALSERVICESJOURNAL.COM SEPTEMBER 2019
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92