search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
CONTINUING EDUCATION :: COVID-19 UPDATE


measures used to prevent the spread of SARS-CoV-2.30 However, as Tedros Adhanom Ghebreyesus, the Director- General for the World Health Organization, noted, the world will be living with COVID-19 for the foreseeable future.30 While we now have the basic tools needed to address COVID- 19—testing, treatment, and vaccinations, it is clear that areas of our surveillance, public health, and medical systems need to be bolstered. Vaccines importantly continue to prevent severe infections, however vaccine effectiveness against infec- tion wanes with time, new variants of concern can partially evade the immune system, and large populations around the world have not had adequate access vaccinations for SARS- CoV-2.31


While effective treatments have been developed for


SARS-CoV-2, treatments are costly, have supply-chain issues for availability and distribution, and a lack of awareness of treatments causes them to be underutilized.32


While many


testing modalities for SARS-CoV-2 which have been devel- oped including rapid testing and genomic testing, access to COVID-19 testing continues to be a problem, especially among the uninsured. Frequent and routine testing should be made available for the public to help guide public health measures to address local epidemics, and continued genomic sequencing is needed to assess SARS-CoV-2 mutations to monitor new variants of concern.


Conclusions The tools needed to address SARS-CoV-2 have been de- veloped; however, continued vigilance is needed as the frequency and distribution of SARS-CoV-2 transitions from a pandemic to endemic state. This study demonstrates that timely outpatient SARS-CoV-2 variant surveillance con- ducted by a private laboratory could be used to inform public health efforts to identify changes in SARS-CoV-2 strains in local communities. Government agencies should engage private clinical laboratories in the surveillance of diseases that threaten the public’s health to supplement national disease surveillance networks.


REFERENCES


1. Baric RS. Emergence of a Highly Fit SARS-CoV-2 Variant. N Engl J Med. Dec 31 2020;383(27):2684-2686. doi:10.1056/NEJMcibr2032888. https:// www.nejm.org/doi/pdf/10.1056/NEJMcibr2032888. Accessed April 18, 2022.


2. Lauring AS, Malani PN. Variants of SARS-CoV-2. JAMA. Aug 13 2021;doi:10.1001/jama.2021.14181. https://jamanetwork.com/journals/ jama/fullarticle/2783248. Accessed April 18, 2022.


3. Tao K, Tzou PL, Nouhin J, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. Sep 17 2021;doi:10.1038/ s41576-021-00408-x. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC8447121/. Accessed April 18, 2022.


4. Schneider EC. Failing the Test - The Tragic Data Gap Undermining the U.S. Pandemic Response. N Engl J Med. Jul 23 2020;383(4):299-302. doi:10.1056/NEJMp2014836. https://www.nejm.org/doi/full/10.1056/ NEJMp2014836. Accessed April 18, 2022.


5. Mirchandani P. Health Care Supply Chains: COVID-19 Challenges and Pressing Actions. Ann Intern Med. Aug 18 2020;173(4):300-301. doi:10.7326/ M20-1326. https://pubmed.ncbi.nlm.nih.gov/32369540/. Accessed April 18, 2022.


6. Maxmen A. Has COVID taught us anything about pandemic prepared- ness? Nature. Aug 2021;596(7872):332-335. doi:10.1038/d41586-021-02217-y. https://www.nature.com/articles/d41586-021-02217-y. Accessed April 18, 2022.


7. Krijger PHL, Hoek TA, Boersma S, et al. A public-private partnership model for COVID-19 diagnostics. Nat Biotechnol. Oct 2021;39(10):1182-1184. doi:10.1038/ s41587-021-01080-6. https://search.bvsalud.org/global-literature-on-novel- coronavirus-2019-ncov/resource/es/covidwho-1442791. Accessed April 18, 2022.


12 JUNE 2022 MLO-ONLINE.COM


8. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 Variants - Clini- cal, Public Health, and Vaccine Implications. N Engl J Med. May 13 2021;384(19):1866-1868. doi:10.1056/NEJMc2100362. https://www.nejm. org/doi/10.1056/NEJMc2100362. Accessed April 18, 2022.


9. Del Rio C, Malani PN, Omer SB. Confronting the Delta Variant of SARS- CoV-2, Summer 2021. JAMA. Aug 18 2021;doi:10.1001/jama.2021.14811. https://jamanetwork.com/journals/jama/fullarticle/2783478. Accessed April 18, 2022.


10. Jansen L, Tegomoh B, Lange K, et al. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) Variant Cluster - Nebraska, November-December 2021. MMWR Morb Mortal Wkly Rep. Dec 31 2021;70(5152):1782-1784. doi:10.15585/mmwr.mm705152e3. https://www.cdc.gov/mmwr/volumes/70/ wr/mm705152e3.htm. Accessed April 18, 2022.


11. Team CC-R. SARS-CoV-2 B.1.1.529 (Omicron) Variant - United States, December 1-8, 2021. MMWR Morb Mortal Wkly Rep. Dec 17 2021;70(50):1731-1734. doi:10.15585/mmwr.mm7050e1. https://pubmed. ncbi.nlm.nih.gov/34914670/. Accessed April 18, 2022.


12. Wink PL, Volpato FCZ, Monteiro FL, et al. First identification of SARS- CoV-2 Lambda (C.37) variant in Southern Brazil. Infect Control Hosp Epi- demiol. Sep 2 2021:1-7. doi:10.1017/ice.2021.390. https://www.cambridge. org/core/services/aop-cambridge-core/content/view/42A50C4938E81B AAE1F4CAF1E03B9419/S0899823X21003901a.pdf/div-class-title-first- identification-of-sars-cov-2-lambda-c-37-variant-in-southern-brazil-div. pdf. Accessed April 18, 2022.


13. Willyard C. What the Omicron wave is revealing about human immunity. Nature. Feb 2022;602(7895):22-25. doi:10.1038/d41586-022-00214-3. https:// www.nature.com/articles/d41586-022-00214-3. Accessed April 18, 2022.


14. Zhang X, Shao Y, Tian J, et al. pTrimmer: An efficient tool to trim primers of multiplex deep sequencing data. BMC Bioinformatics. May 10 2019;20(1):236. doi:10.1186/s12859-019-2854-x. https://www.seman- ticscholar.org/paper/pTrimmer%3A-An-efficient-tool-to-trim-primers- of-deep-Zhang-Shao/93234c66e21ee3ce0d543120e05faa5bfb7ec921. Accessed April 18, 2022.


15.Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. Mar 2020;579(7798):265-269. doi:10.1038/s41586-020-2008-3. https://www.nature.com/articles/s41586- 020-2008-3. Accessed April 18, 2022.


16. Li H, Durbin R. Fast and accurate long-read alignment with Burrows- Wheeler transform. Bioinformatics. Mar 1 2010;26(5):589-95. doi:10.1093/ bioinformatics/btp698. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC2828108/. Accessed April 18, 2022.


17. Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. Feb 16 2021;10(2)doi:10.1093/gigascience/giab008.


18. Xun G, Lane ST, Petrov VA, Pepa BE, Zhao H. A rapid, accurate, scal- able, and portable testing system for COVID-19 diagnosis. Nat Commun. May 18 2021;12(1):2905. doi:10.1038/s41467-021-23185-x. https://doaj.org/ article/2694721fc8374a76a6fcc49618e6ec06. Accessed April 18, 2022.


19. Rambaut A, Holmes EC, O’Toole A, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. Nov 2020;5(11):1403-1407. doi:10.1038/s41564-020-0770-5. https:// www.nature.com/articles/s41564-020-0770-5. Accessed April 18, 2022.


20. Maxmen A. One million coronavirus sequences: popular genome site hits mega milestone. Nature. May 2021;593(7857):21. doi:10.1038/d41586- 021-01069-w. https://www.nature.com/articles/d41586-021-01069-w. Accessed April 18, 2022.


21. Shu Y, McCauley J. GISAID: Global initiative on sharing all influ- enza data - from vision to reality. Euro Surveill. Mar 30 2017;22(13) doi:10.2807/1560-7917.ES.2017.22.13.30494. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC5388101/. Accessed April 18, 2022.


22. Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health (World Health Organization) (2021). https://www.who.int/publications/i/item/9789240018440. Accessed April 18, 2022.


23. Callaway E. The mutation that helps Delta spread like wildfire. Nature. Aug 2021;596(7873):472-473. doi:10.1038/d41586-021-02275-2. https://www. nature.com/articles/d41586-021-02275-2. Accessed April 18, 2022.


24. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. Jul 2021;19(7):409- 424. doi:10.1038/s41579-021-00573-0. https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC8167834/. Accessed April 18, 2022.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52