7
very narrow mass differences between isobars, eg, C3 vs SH4 (0.0034 Da), CH2 vs N (0.0126 Da), and CH4 vs O (0.0364 Da) (required resolving power at m/z 300 of 89 000, 24 000, 8400, respectively). It is highly unlikely that such isobars occupy the same 2D time space in GC×GC; thus, resolving power requirement would be much lower. GC×GC‐PI‐HRMS with prominent molecular ions can add several other dimensions on top of two‐dimensional chromatographic separation. Added dimensions could be: 1) near unambiguous mass determination; 2) detection of heteroatom classes; 3) degree of unsaturation; 4) carbon number characterisation; and 5) elemental compositions. These could be used for improved visualisation and characterisation of petrochemicals. As shown in Figure 5, a significant retention of molecular ions could be achieved in PI compared to EI. Cumulative spectra achieved through PI- HRMS could further be treated to generate
Kendrick Mass Defect (KMD) plot to reveal and compare the distribution of alkyl series and abundances of classes with different degrees of saturation. In addition, m/z to C:H ratio, carbon number to C:H ratio, or m/z to DBE etc. could be plotted for improved visualisation of data.
In conclusion, PI plays a greater role in isomeric species identification of paraffinic and heteronate compounds as it generates molecular ions as well as structurally important fragment ions. However, for bicyclic, or polycyclic naphthenic, and monoaromatic compounds, EI still remains advantageous. GC×GC‐Soft-ionisation (PI) followed by high‐resolution MS analysis enables confirmation of structures/ formulae as well as improved visualisation of data.
References 1. C.V. Mühlen, C.A. Zini, E.B. Caramão
and P. Marriott, Applications of comprehensive two-dimensional gas chromatography to the characterisation of petrochemical and related samples, J. Chromatogr. A 1105(2006), 39-50.
2. A. Giri, M. Coutriade, A. Racaud, K. Okuda, C. Cody and J-F. Focant, Molecular characterization of volatiles and petrochemical base oils by photo‐ ionization GC×GCTOF‐MS, Anal. Chem. 89(2017), 5395‐5403.
3. M.S. Alam, C. Stark and R.M. Harrison, Using variable ionization energy time‐of‐flight mass spectrometry with comprehensive GC×GC to identify isomeric species, Anal. Chem. 88(2016), 4211‐4220.
4. L. Hanley and R. Zimmermann, Light and molecular ions: the emergence of vacuum UV single‐photon ionization in MS, Anal. Chem. 81(2009), 4174‐4182.
160 min 3,285 56 L ACN 800 kWh USD 3,400 USD 114,400 *** ** *
1 2
3 4 5
6
Analysis Time Number of Analyses per Instrument p.a. Organic EluentWaste ** Electric Power Consumption ** Costs of Organic Solvents ** Lab Costs **,***
For Ebastinumacc. to
Ph.Eur. Per 1,000 analyses Assuming daily costs of USD 1,000 per instrument and operator
www.molnar-institute.com
-98% +4,000% -98% -98% -99% -98%
3+1 min 131,400 1.05 L ACN:IPA 20 kWh USD 44 USD 2,844
In-silico RejuvenatedMethod
Pharmacopoeia Method *
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68