search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
36 May / June 2019


LC-MS/MS Method for Determination of Glyphosate, AMPA, and Glufosinate in Cereals


by Olga I. Shimelis, R&D Manager, MilliporeSigma, 595 N. Harrison Rd., Bellefonte, PA 16823, USA


A simplified LC-MS/MS method for the determination of glyphosate, (aminomethyl)phosphonic acid (AMPA), and glufosinate in cereals is described. The method enables the analysis of glyphosate and its metabolites without sample derivatisation. The samples are prepared utilising an extraction method based upon the Quick Polar Pesticides Method and separated by high-performance liquid chromatography with MS detection. A polymer-based, ion-exchange chromatography column allowed retention of the analytes while water, methanol and ammonium carbonate mobile phase system insured proper ionisation under negative ESI conditions. The use of isotopically labelled standards allowed the use of solvent-based calibration curves.


Introduction


Glyphosate is one of the most commonly used herbicides in the world with more than 1.4 billion pounds of glyphosate applied to fields per year [1]. Its usage increased after the introduction of genetically modified, glyphosate tolerant crops such as corn, soybeans and cotton. In the USA, US Environmental Protection Agency (EPA) regulation document Code of Federal Regulations (CFR)-title 40-volume 24 sets the tolerance levels for the occurrence of glyphosate in food commodities and produce [2]. The EPA tolerance for glyphosate residues in cereal grains (also called crop group 15) are set at 30 ppm; this limit excludes rice, soy, and corn. In rice the tolerance is 0.1 ppm whereas in sweet corn it is 3.5 ppm [2]. For glufosinate, a herbicide that is often included with glyphosate in analytical methods, the tolerance values are 0.4 ppm for cereal and 1.0 ppm for rice. These tolerance values include metabolites and degradants. Therefore, a glyphosate metabolite, AMPA, was also included into this study (Figure 1).


Since glyphosate is widely used during production of soybeans and corn, it was expected to be found in these commodities. In this application, the presence of glyphosate in other grains such as oats and wheat used in the production of breakfast cereals, including infant cereal, was explored.


Various methods for glyphosate analysis were developed over the last 30 years. Some required derivatisation of analytes


for HPLC with fluorescence detection with o-phthalaldehyde [3]. A method with glyphosate derivatisation using fluorenylmethyloxycarbonyl chloride (FMOC) and fluorescence detection has also been proposed and widely used [4]. Recently, with the advent of modern, more sensitive and rugged LC-MS/MS instruments, it has become possible to analyse glyphosate and its metabolites without derivatisation as illustrated in this work with direct analysis of glyphosate by MS/MS.


Experimental


All reagents were purchased from Sigma- Aldrich, St. Louis, MO, USA unless indicated otherwise. Glyphosate, AMPA and ammonium glufosinate were of analytical standard grade. Isotopically labelled internal standards were used including Glyphosate- 2-13


C,15 N, AMPA-13 C,15 N,D2 . Glufosinate-D3


was obtained from Toronto Chemicals, North York, ON, Canada. Solutions of internal standards and non-isotopically labelled standards were prepared in water at 1 mg/mL and used for spiking the grain matrices.


Organic instant oatmeal and organic whole wheat flour were selected as test matrices during method development. These foods were scanned for the presence of glyphosate using the methods described below and glyphosate was not found. Whole wheat flour was used as received while the quick oats were ground prior to use. For the method development study, both matrices were spiked to contain 100 ppb of


Glyphosate


AMPA Glufosinate


Figure 1. Structures of Glyphosate, AMPA and Glufosinate


glyphosate and 100 ppb of glufosinate. The oats were spiked in addition to contain 100 ppb of AMPA.


For studies of glyphosate occurrence in grain products, the following matrices were tested for glyphosate using the developed methods: wheat white flour, instant oatmeal, infant rice cereal, infant oat cereal, and infant mixed grain cereal. All of these products were purchased in the local grocery store and were not labelled as organic.


Supel™-Select HLB Solid Phase Extraction (SPE) in 1 ml/30 mg size and Amicon® Ultra –0.5 centrifugal filter units with 3kDa Molecular Weight Cut Off (MWCO) were purchased from Sigma-Aldrich (St. Louis, USA).


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68