search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
38 May / June 2019


employed. The resulting signals were found to have higher variability in comparison to the samples cleaned using SPE.


Glyphosate in beer


No analytes were found in the tested beer. Thus, the beer sample was spiked at 50 ppb with glyphosate and glufosinate and analysed. The results are presented in Table 2. In this work further analysis of beer samples was not attempted due to the limited instrumental detection limit.


Figure 3. Organic Oatmeal Sample, Blank and Spiked at 100 ppb Glyphosate. Results Method development


While multiple columns and mobile phase conditions were tested during method development for detection of underivatised glyphosate using LC-MS/MS, the final chromatographic method used an anion exchange column. It allowed for retention of compounds under the basic mobile phase conditions after direct injection of samples in 50-50 water-methanol extraction solvent. No further dilution or solvent exchange was required for the samples which resulted in convenient and fast analysis method. The elution off the HPLC column was performed by increasing the pH of the mobile phase to 9.2 using 20 mM ammonium carbonate buffer and introducing small amount of methanol (up to 5% methanol in the mobile phase). Multiple injections of samples extracted from multiple matrices did not result in significant shifts in the retention time indicating the ruggedness of this LC method.


Sample preparation was performed using fast extraction with methanol. SPE was the first choice for sample cleanup as the sample can be simply passed through the cartridge. Since difficulty was encountered with undissolved co-extracted particulates in wheat samples, ultrafiltration cleanup was employed. The sample cleanup by both methods was acceptable for LC/MS analysis, injection of multiple extracted samples did not result in the shift of retention times or decrease in the analyte’s signals.


Results from spiked grain samples


Oatmeal and wheat samples that were labelled ‘organic’ were used during method development. The samples were analysed


for glyphosate and related compounds. The compounds were not found to be present in these samples (Figure 3). Consequently, the samples were spiked with analytes and analysed using the proposed method. The results of method development using spiked organic samples are shown in Table 2. In the spiked oatmeal samples, all three analytes were detected and quantified at 100 ppb, and in the wheat flour samples glyphosate and glufosinate were detected and quantified at 100 ppb. Wheat flour was not spiked with AMPA. Accuracy of the method was measured as the % recovery of the known spiked amounts. For glyphosate, the recovery values ranged from 118% to 125%, while for glufosinate they were between 105% and 112%. For AMPA in oatmeal sample recovery was at 118%. The method for wheat samples produced slightly higher uncertainties for both glyphosate and glufosinate, up to 19% RSD. The sample preparation method for wheat used only ultrafiltration and SPE cleanup was not


Table 2. Method development results after spiking 100 ppb into cereal/grains labelled ‘organic’ and 50 ppb into beer.


Analyte/Matrix Glyphosate N=6


Oatmeal


Whole wheat 125 Beer


118 AMPA 5


19 21


118 - -


15 - -


Glufosinate


Recovery (%) % RSD Recovery (%) % RSD Recovery (%) % RSD 125


105 105 112


Table 3. Analysis results in non-organic grains and cereals Analyte/Matrix


Glyphosate N=3 Oatmeal


White wheat flour Infant rice cereal Infant oat cereal


Infant mixed cereal Beer (Lager)


8 5


16 7


Identification and quantitation of glyphosate in cereals


The results of glyphosate analysis in cereals using the proposed methods are presented in Table 3. These samples were purchased in the grocery store, were not labelled ‘organic’ and were not spiked with standards. Internal standards were used as described in the experimental section. The samples of instant oatmeal (Figure 4) and wheat white flour contained significant incurred amounts of glyphosate, 1.2 and 0.8 ppm, respectively. Infant rice cereal had very low levels of glyphosate. The levels were close to the limit of instrument sensitivity in that matrix and the resulting RSD was high. Infant oat cereal contained glyphosate at 1.1 ppm and infant mixed cereal was found to contain glyphosate at 0.25 ppm. Glufosinate was not found in any cereal products. AMPA was found only in instant oatmeal at low levels.


AMPA


0.06 1.1


0.25 ND


NT=not tested, ND=not detected


12 12 4 5


0.04 NT ND NT NT ND


Glufosinate


Found, ppm % RSD Found, ppm % RSD Found, ppm 1.2 0.8


27 ND ND ND ND ND ND


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68