search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
54 May / June 2019


ionRocket: An innovative Thermal Desorption and Pyrolysis Device for Direct Analysis in Real Time-Mass Spectrometry (DART-MS) for Rapid Characterisation of Difficult Samples


by Derek Gonzales, Mike Churchill PhD Biochromato USA, 10060 Carroll Canyon Rd. Suite 100, San Diego, CA 92131


Direct analysis in real time-mass spectrometry († DART-MS) enables rapid analysis of both solid and liquid samples under ambient (open laboratory) conditions without sample preparation. However, certain samples are difficult to analyse using DART-MS due to the varying volatility of substituents in complex samples. Furthermore, fibres and powders can be challenging to keep in place in the DART gas stream. To overcome these challenges, an innovative sample introduction device called ‘ionRocket’ has been developed, which gradually heats a sample placed directly beneath the DART gas stream. Gradient heating of the sample before ionisation creates time/temperature resolved mass spectra, separating species both by their thermal desorption profiles and m/z. Samples are placed in a small single-use copper vessel before heating. This both facilitates thermal transfer and also provides the option to weigh samples prior to analysis. Weighed samples yield reproducible mass spectra intensity, allowing calibration curves of analyte amount vs peak intensity to be calculated. The change in temperature by time separates compounds based on volatility thus providing an additional axis of data similar to a chromatogram, while maintaining minimal sample preparation.


Introduction:


Direct analysis in real time-mass spectrometry (DART-MS) enables nearly instantaneous determination of sample composition using mass spectrometry. Therefore, DART-MS is a powerful method for analysis of sample mixtures. For example, many polymers are difficult to volatilise using DART because of the thermal energy required to break chemical bonds into smaller fragments. Furthermore, the temperature at which compounds vaporise varies based on volatility. If the DART gas temperature is too low, samples will not vaporise efficiently. However, too much heat transfer risks decomposition of compounds and thus cannot be analysed. Samples containing complex matrices can be difficult to resolve desired peaks due to these differences in volatility between compounds. Analysis of oil additives is one example. To enable analysis of difficult samples by using DART-MS, an innovative device for DART-MS, called ‘ionRocket’ was developed, which induces thermal desorption and pyrolysis of samples [1-3]. The vapour phase of polymer samples is generated by applying a temperature-controlled heating gradient, then ionised and introduced into the mass spectrometer.


Liquid or solid samples are introduced just below the DART stream in a small copper vessel where they are heated directly using an electronic resistive heater (Figure 1a-c), in a controlled manner, from room temperature to 600°C typically at a rate of 100°C/min. Compounds are then vaporised and ionised using the DART source


Figure 1a. Diagram of ionRocket between DART ion source and Mass Spectrometer.


and analysed using mass spectrometry. Initially, as the temperature rises, more volatile compounds thermally desorb at relatively low temperatures from around 100-300°C, this can be defined as the thermal desorption region. Then, at higher temperatures around 400-600°C, pyrolysis products of polymers and other compounds can be detected with a specific thermal decomposition pattern based on the material composition, considered the pyrolysis region. Thus, the Thermal Desorption and Pyrolysis (TDP) device ‘ionRocket’ coupled with DART-MS (TDP/DART-MS) offers detailed information on the sample material composition in minutes without any sample preparation.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68