search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
13


https://www.epa.gov/sites/production/files/2016-06/documents/rfa e15-retailer-handbook.pdf.


5. United States Environmental Protection Agency. Emerging Fuels and Underground Storage Tanks (USTs) (2018). https://www.epa gov/ust/emerging-fuels-and-underground-storage-tanks-usts.


6. United States Department of Energy. Selecting the Right Octane Fuel. https://www.fueleconomy.gov/feg/octane.shtml.


7. J. Yanowitz, E. Christensen, R.L. McCormick. Utilization of Renewable Oxygenates as Gasoline Blending Components (2011). National Renewable Research Laboratory. https://www.nrel.gov docs/fy11osti/50791.pdf.


8. J. Stolark. Fact Sheet – A Brief History of Octane in Gasoline: From Lead to Ethanol (2016). Environmental and Energy Study Institute. https://www.eesi.org/papers/view/fact-sheet-a-brief-history-of-octane#3.


9. BP. Fuel News: Fuel, Octane & Power (2010). https://www.bp.com content/dam/bp-country/en_au/media/fuel-news/fuel-octane-power.pdf.


10. United States Energy Information Administration. Biofuels: Ethanol and Biodiesel. https://www.eia.gov/energyexplained index.php?page=biofuel_ethanol_environment.


11. United States Department of Energy. Ethanol Benefits and Considerations. https://afdc.energy.gov/fuels/ethanol_benefits.html.


12. Congressional Budget Office. The Impact of Ethanol Use on Food Prices and Greenhouse-Gas Emissions (2009). http://large stanford.edu/courses/2011/ph240/sojka2/docs/04-08-Ethanol.pdf.


13. R.L. McCormick, G. Fioroni, L. Fouts, E. Christensen, J. Yanowitz, E. Polikarpov, K. Albrecht, D. J. Gaspar, J. Gladden, A. George. SAE International Journal of Fuels and lubricants 10(2) (2017). https://www.osti.gov/pages/servlets/purl/1378889.


14. A.P. Irías-Mata, G. Lutz. Cuadernos de Investigación UNED 5(2) (2013), 279-282.


15. Asian Clean Fuels Association. Report on Harmful Chemicals in Gasoline Blending (2014). https://www.acfa.org.sg/pdf InFocus17_2014_10_Report_on_harmful_chemicals.pdf.


16. ASTM International. ASTM D6730, Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100–Metre Capillary (with Precolumn) High-Resolution Gas Chromatography (2016). https://www.astm.org/Standards D6730.htm.


17. ASTM International. ASTM D6839, Standard Test Method for Hydrocarbon Types, Oxygenated Compounds, and Benzene in Spark Ignition Engine Fuels by Gas Chromatography (2018). https://www.astm.org/Standards/D6839.htm.


18. California Environmental Protection Agency. SOP No. MLD 118: Procedure for the Detailed Hydrocarbon Analysis of Gasolines by Single Column High Efficiency (Capillary) Column Gas Chromatography (1997). https://www.arb.ca.gov/testmeth slb/slb118.pdf.


19. Bruker Daltonics Inc. Application Note CA703979: Fast Gasoline Characterization by Optimizing Multi-dimensional GC (PIONA+). https://www.bruker.com/fileadmin/user_upload/8 PDF-Docs/Separations_MassSpectrometry/Literature/literature ApplicationNotes/PIONA_AppNote_CA703979.pdf.


20. K.A. Schug, I. Sawicki, D.D. Carlton Jr., H. Fan, H.M. McNair, J.P. Nimmo, P. Kroll, J. Smuts, P. Walsh, D. Harrison. Anal. Chem. 86 (2014), 8329-8335.


21. ASTM International. ASTM D8071, Determination of Hydrocarbon Group Types and Select Hydrocarbon and Oxygenate Compounds in Automotive Spark-Ignition Engine Fuel Using Gas Chromatography with Vacuum Ultraviolet Absorption Spectroscopy Detection (GC-VUV) (2017). https://www.astm.org Standards/D8071.htm.


Innovative Autosampler now has Option to Feed 2 (U)HPLC Systems


At HPLC 2019, HTA introduces the HT4000L with double valve option, an innovative and unmatched version of its HPLC autosampler.


This outstanding autosampler can be configured with 2 valves to serve - with just one autosampler - 2 separate analysers: 2 HPLC, 2 UHPLC, 2 IC or a mix (for example 1 HPLC and 1 IC).


The HT4000L is installed between the 2 analysers: one analyser will sit on the right side, while the other will sit on the left side. Injection can be performed alternatively in the 2 systems or, whenever required, only in one of them, if the other one is temporarily left unused. The double valve option additionally features a tray organised in 2 separated racks (60 samples each, when using 2ml vials) that respectively serve the 2 analysers.


This new version joins many others already available, such as standard HPLC, FastLC, Biocompatible, UHPLC and Preparative. The HT4000L demonstrates once again its great flexibility and its ability to meet even the most challenging demands, offering a unique market solution.


The HT4000L with double valve option is a cheaper alternative to buying 2 separate autosamplers, and therefore represents a great solution to considerably reduce automation investment.


More information online: ilmt.co/PL/BOQO


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68