41
Integration of MS and UV Data for Peak Tracking in HPLC Method Development
by Richard Verseput, President S-Matrix Corporation 1594 Myrtle Avenue Eureka, CA 95501 USA Phone: 707-441-0405 E-mail:
richard.verseput@
smatrix.com
Joseph A. Turpin, Director, Chromatography Products and Services, S-Matrix Corporation Purdue Technology Center, 5225 Exploration Drive, Suite S-2357, Indianapolis, IN 46241 USA, Phone: 317-514-3458, E-mail:
joseph.turpin@smatrix.com
High Performance Liquid Chromatography (HPLC) is the most widely used analytical technique in support of pharmaceutical drug development. Advances in instrumentation design, column technology (UHPLC), software, and automation have led to reductions in method development cycle time, as well as the “greening” of the technique with the accompanying reduction in solvent usage and waste. These advancements, along with the ability to connect and obtain data from multiple detectors, will likely maintain its position as the lead analytical platform for the foreseeable future.
The introduction of Quality by Design (QbD) and Lifecycle Management concepts into pharmaceutical method development promise to improve the quality of methods throughout the method lifecycle. Quantitative characterization of a robust analytical method design space, a central element of the QbD methodology, has been consistently demonstrated to improve method performance and repeatability, thereby reducing downstream failures [1,
2, 3]. This analytical method design space has recently been referred to in Analytical QbD circles as the method operable design region (MODR) [4]. Software such as Fusion QbD (S-Matrix Corporation, Eureka, CA USA) promotes this approach with the ability to generate statistically defensible multi- factor designed experiments, automatically transcribe these experiments into ready- to-run sequences and instrument control methods within the Chromatography
Data Software (CDS), and directly import all experiment results from the CDS for automated modeling and visualization.
To fully realize the benefits of analytical QbD supporting technologies must also be able to address the separation of all potential impurities and degradation products in complex samples. Samples containing molecules lacking chromophores, or ones for which UV absorbance changes with
Figure 1 – Non-absorbing Peak
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60