search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
39


unassociated mouse targeting secondary antibody 2


AbmIgG AbmIgG* or 1 *. The very small peak


eluting at 2.6 min can either be a dimer of 2


Abfitc: 2 2AbmIgG AbmIgG*. If it is 1 recognises FITC antigen. Summary


in contrast i) retards the linear velocity of non-analytes (impurities), ii) is prevented from interacting with analytes, and iii) has no impact on analyte retention.


). Ps


When MASC separations are carried out with a size exclusion column i) the entire analysis of a sample, irrespective of sample complexity can be achieved with a single mobile phase volume, ii) separations are achieved by isocratic elution, iii) column recycling is unnecessary, and iv) analyte carryover is precluded by using new analyte sequestering transport phase in each analysis.


A limitation of MASC is in distinguishing between analytes and transport particles at the point of detection. Analytes and an ASTP can have indistinguishable absorbance properties. That problem was addressed herein via a fluorescent sandwich format much as in sandwich type immunological assays. Detection of the FITC targeting antibody 1


Abfitc


creating the fluorescent ASTP~FITC: 1 2AbmIgG


for example was achieved by Abfitc


:


* sandwich. This approach has the advantage of adding yet another level of selectivity during detection but increases the analytical complexity and cost of the analysis.


Acknowledgments


The authors gratefully acknowledge support of this work through an NIH Phase II Phase II SBIR grant (5R44GM116663) entitled ‘Sample Preparation; The Achilles Heel of Mass Spectrometry Based Diagnostics II’.


Mobile affinity sorbent chromatography (MASC) will be most useful in routine separations involving small numbers of analytes. The most powerful feature of the method is the simultaneous use of two partitioning phases that cause analytes of interest to elute in the column void volume ahead of impurities. One of these phases is a nanoparticulate transport phase of ~2 mDa that i) binds analytes with high affinity and selectivity based on their 3D structure, ii) causes analyte to elute from columns ahead of impurities, and iii) precludes interactions of analytes with the column stationary phase (Ps


Abfitc * the primary antibody no longer : References


1. Regnier, Fred E.; Kim, JinHee. Proteins and Proteoforms: New Separation Challenges. Anal. Chem. (2018), 90, 361−373.


2. Klont, Frank; Bras, Linda; Wolters, Justina C.; Ongay, Sara; Bischoff, Rainer; Halmos, Gyorgy B.; Horvatovich, Péter. Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics. Anal. Chem., (2018), 90 (8), pp 5405– 5413.


3. Gregorich, Zachery R.; Ge, Ying. Top-down proteomics in health and disease: Challenges and opportunities. Proteomics (2014), 14, 1195–1210.


4. McCue, Justin T.). Theory and use of hydrophobic interaction chromatography in protein purification applications. Meth. Enzymol. (2009), 463, 405–414.


5. Li, ZhiYu; Kim, JinHee; Regnier, Fred E. Mobile Affinity Sorbent Chromatography. Anal. Chem. (2017), 35(8), 510-511.


6. Meyer, Veronika R. Practical High- Performance Liquid Chromatography. (2010), 5th Edition, 344.


7. Small, H. Hydrodynamic chromatography a technique for size analysis of colloidal particles. J. Colloid Interface Sci. (1974), 48,147-161.


8. Striegel, A.M. Hydrodynamic chromatography: packed columns, multiple detectors, and microcapillaries. Anal. Bioanal. Chem. (2012), 402 (1), 77–81.


9. Fekete, S.; Beck, A.; Veuthey, J.-Luc; Guillarme, D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J. Pharm. Biomed. Anal. (2014), 101, 161-173.


10. Schneck, N.A.; Lowenthal, M.; Phinney, K.; Lee, Sang B. Current trends in magnetic particle enrichment for mass spectrometry-based analysis of cardiovascular protein biomarkers. Nanomedicine. (2015), 10(3), 433–446.


11. Jana, N.R.; Earhart, C.; Ying, J.Y. Synthesis of Water-Soluble and Functionalized Nanoparticles by Silica Coating. Chem. Mater. (2007), 19 (21), 5074–5082.


12. Gao, Q.; Madian, A.G.; Liu, X.; Adamec, J.; Regnier, F.E. Coupling protein


complex analysis to peptide based proteomics. J. Chromatogr., A (2010), 1217(49), 7661-7668.


13. Suzuki, T.; Tomita, K.; Murachi, T. Creatine kinase-inhibiting monoclonal antibodies: preparation and characterization of porcine MM isoenzyme-specific antibodies. Molec. Cell. Probes. (1988), 2(9), 157-167.


14. Elfineh, L; Classon, C; Asplund, A; Pettersson, U; Kamali-Moghaddam, M; Lind, S.B. Tyrosine phosphorylation profiling via in situ proximity ligation assay. BMC Cancer. (2014),14, 435.


15. Vettori, M.H.P.B.; Franchetti, S.M.M.; Contiero, J. Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydrate Polymers. (2012), 88,1440–1444.


16. Betancor, L.; López-Gallego, F.; Hidalgo, A.; Alonso-Morales, N.; Fuentes, M.; Fernández-Lafuente, R.; Guisán; J.M. Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde. J. Biotech. (2004), 110, 201–207.


17. Jia, Y.; Li, J. Molecular Assembly of Schiff Base Interactions: Const. Applic. Chem. Rev. (2015), 115, 1597−1621.


18. Evangelista, R. A.; Chen, F-T. A.; Guttman, A. Reductive amination of N-linked oligosaccharides using organic acid catalysts. J. Chromatogr. A. (1996), 745, 273-280.


19. Zhang R.; Tang M.; Bowyer A.; Eisenthal R.; Hubble J. Synthesis and characterization of a D-glucose sensitive hydrogel based on CM-dextran and concanavalin A. React. Funct. Polymers. (2006), 66, 757–767.


20. Chou, P.-H.; Chen, S.-H.; Liao, H.-K.; Lin, P.-C.; Her, G.-R.; Lai, A.C.-Y.; Chen, J.-H.; Lin, C.-C.; Chen, Y.J. Nanoprobe- Based Affinity Mass Spectrometry for Selected Protein Profiling in Human Plasma. Anal. Chem. (2005), 77, 5990- 5997.


21. Hermanson, G.T. Immobilization of ligands on chromatography supports. Bioconjug. Tech. (Third Edition), (2013), 127-128.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60