Air Monitoring 35 likely to be an air quality issue.
Perhaps the greatest benefit of networks is their ability to provide local or ‘hyperlocal’ personal data. This localised data is of significantly greater interest to citizens, helping them to make informed decisions such as where and how to travel, where to exercise, and even where to go to school or buy a house.
The ‘Breathe London’ project is a good example of an installed network. Over 110 AQMesh pods containing Alphasense gas sensors, have been located around London – mostly mounted on lamp posts. The project is being delivered by a consortium led by Environmental Defense Fund Europe in partnership with the Mayor’s Office. It is providing a unique insight into local air quality that will inform development strategy, whilst also engaging London citizens; helping them to identify pollution hot-spots and think about how they can help solve local air pollution problems. Hyperlocal air quality data is an important feature of smart cities, helping policy makers and planners to assess mitigation measures and develop infrastructure that delivers cleaner air. Data from the London monitoring pods can be viewed at
www.breathelondon.org.
A further example of an air quality monitoring network is being developed by the International Association of Athletics Federations (IAAF) in collaboration with the United Nations Environment Program (UNEP). This five-year partnership between the IAAF and UNEP, supported by the Climate and Clean Air Coalition, aims to install 1000 monitors at IAAF certified athletics tracks around the world. The project provides an opportunity for countries with limited air quality data to learn how low-cost sensors can provide evidence to improve the health of citizens and future athletes. The monitors, which also utilise Alphasense sensors, are being supplied and installed by Kunak Technologies of Spain. To see live data from one of the stadia visit https://
monaco.diamondleague.com.
Citizen Science
In locations where there is either no air quality monitoring or where simple indicative measurements would be of value, the number of citizen science projects is increasing rapidly. Typically, these are research collaborations between scientists and volunteers that seek to expand the gathering of scientific data. Such projects deliver the combined benefits of more data (to inform models) and more engaged, better informed citizens.
These projects do not require the accuracy of industrial grade low cost air quality networks, which is important because now these low cost sensors can be used in lower cost housings that require little maintenance and validation, which reduces the initial network cost and effectively eliminates maintenance costs. These citizen science air quality units are effective at identifying pollution hot-spots and help citizens to better understand the local issues
Training was provided at maker spaces in Nairobi
that give rise to their pollution levels. Alphasense supplies the same low cost sensors to both citizen science projects and manufacturers of performance accredited air quality monitors.
Supported by the Centre for Global Equality (CGE), the ‘Open- Seneca’ project is a good example of citizen science; this is a student-led initiative. CGE evolves innovative solutions to global challenges; aiming to solve problems that undermine the wellbeing of the poorer half of the world’s population. Focusing on people who live on less than $3 a day, CGE projects facilitate collaboration between business, academia and civil society, drawing particularly on the University of Cambridge and companies in the Cambridge Cluster.
Nairobi suffers from high levels of air pollution and smog, but the local population is largely unaware of the consequences of this, and the city has no reference monitoring stations. In collaboration with the University of Nairobi, Open-Seneca is therefore helping scientists and citizens build air quality monitors so that participants can measure their air pollution exposure in a bid to raise awareness, initiate behavioural change and inform policy.
Open-Seneca scientists from Cambridge have visited maker spaces in Nairobi and provided training on the assembly and operation
of air monitors that are comprised of Alphasense gas and particle sensors, a Raspberry Pi microcomputer, and a GSM/ GPS module. Local stakeholders have now taken ownership of monitoring the citizen based air quality network.
The future
Interest in air quality is building, both politically and in the media. Awareness of the issues relating to air quality is also growing, and will continue to grow as more monitoring networks are installed and as more citizen science projects are instigated. This will increase pressure on governments and local authorities to implement measures that will improve air quality, especially in towns and cities. As we have explained, monitoring underpins awareness, engagement, town planning and mitigation strategy; the emergence of reliable low cost sensors is vitally important because it is the key technology needed for effective air quality monitoring.
The removal of polluting vehicles from urban areas is essential, and whilst this can be achieved with low emission zones, the challenge will be to remove the need for such vehicles by developing appropriate transport infrastructure, facilitating the adoption of electric vehicles and by exploiting the potential of autonomous vehicles so that fewer vehicles are necessary. Combined, these measures, along with the mitigation of pollution hot spots, will lower urban air pollution and reduce GHG emissions. With the benefit of low cost air quality sensors, we will be able to track the progress of urban improvement projects.
Based in the UK, Alphasense is a totally independent gas sensor development and manufacturing company founded in response to a demand from gas detection equipment manufacturers for better quality gas sensors and a higher level of after-sales support.
The company’s technologies include Electrochemical, Catalytic, Laser optical particle counting, Metal Oxide semiconductor and Optical (including NDIR & PID). Driven by customer demand, new technologies are continually explored and developed.
Alphasense aims to deliver defect-free product on-time, every-time, achieving the lowest warranty returns in the industry through continual improvement and quality-focused development.
With access to some of the best technical and academic expertise available, Alphasense works closely with universities and research organisations worldwide, and the company’s strong re-investment policy maximises the benefits of this privileged position.
Kunak trackside
Author Contact Details Dr. John Saffell, Alphasense Ltd • 300 Avenue West, Great Notley Essex CM77 7AA • Email:
jrs@alphasense.com • Web:
www.alphasense.com
www.envirotech-online.com AET October / November 2019
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44