Red Algal and Other Extremophiles
JVE would also like to thank Kyle T. David (https://orcid. org/0000-0001-9907-789X) and Dylan Simpson (https://orcid. org/0000-0003-1515-868X)
were created with
Biorender.com.
References [1] E Mayr, Tis Is Biology: Te Science Of Te Living World, Universities Press, 1997, pg. 148.
[2] RW Castenholz and TR McDermott, Red Algae in the Genomic Age, Springer Netherlands, 2010, pp. 357–71.
[3] V Reeb and D Bhattacharya, Red Algae in the Genomic Age, Springer Netherlands, 2010, pp. 409–26.
[4] EV Koonin, F1000Res 5 (2016) 1805. [5] JS Taylor and J Raes, Annu Rev Genet 38 (2004) 615–43. [6] M Long et al., Annu Rev Genet 47 (2013) 307–33. [7] WF Martin, BioEssays 39(12) (2017) 201700115. [8] J Van Etten and D Bhattacharya, Trends in Genetics (2020) doi:10.1016/j.tig.2020.08.006.
[9] G Schönknecht et al., Science 339 (2013) 1207–10.
[10] H Qiu et al., Current Biology 23 (2013) R865–66. [11] G Schönknecht et al., BioEssays 36 (2014) 9–20. [12] AW Rossoni et al., eLife 8 (2019) e45017. [13] L Holmgren, Biochem Biophys Res Comm 396 (2010) 147–51.
[14] J Lee et al., Sci Rep 6 (2016) 23744–57. [15] Z Li and R Bock, Nat Commun 9 (2018) 3451–58. [16] H Imachi et al., Nature 577 (2020) 519–25. [17] A Gabr et al., J Phycol 56(4) (2020) 837–43. [18] S Karkar et al., Proc Natl Acad Sci USA 112 (2015) 10208–15. [19] JF Allen, J Teoretical Biol 434 (2017) 50–57. [20] A Moustafa et al., PLoS ONE 3 (2008) e2205. [21] O De Clerck et al., Current Biology 28 (2018) 2921–33.e5. [22] L Eme et al., Current Biology 27 (2017) 807–20. [23] R Kirsch et al., Insect Biochem Mol Biol 52 (2014) 33–50. [24] CB Field et al., Science 281 (1998) 237–40. [25] DB Mills and DE Canfield, BioEssays 36 (2014) 1145–55. [26] LM Grattan et al., Harmful Algae 57 (Pt.B) (2016) 2–8. [27] SK Mandotra et al., Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment, Springer Singapore, 2020, pp. 145–60.
[28] TM McCollom, Annu Rev Earth Planet Sci 41 (2013) 207–29.
[29] S Pucciarelli et al., Antarctic Sci 26 (2014) 491–501. [30] TG Stephens et al., BMC Biology 18(1) (2020) 56–76. [31] Y Yoshida et al., Horizontal Gene Transfer, Springer, 2019, pp. 203–26.
[32] JA Raymond and HJ Kim, PLoS ONE 7(5) (2012) e35968. [33] A Marchetti et al., Nature 457 (2009) 467–70. [34] J Xiong et al., Sci Rep 5 (2015) 15470–81. [35] S Cheng et al., Cell 179 (2019) 1057–67.e14. [36] S Wang et al., Nat Plants 6 (2020) 95–106. [37] TA Richards et al., PNAS 108 (2011) 15258–63. [38] JO Andersson, Current biology 16(18)(2006) R804–06. [39] PJ Keeling and F Burki, Current Biology 29 (2019) R808–17. [40] S Lin et al., Plant Physiol 93 (1990) 772–77. [41] M Kanehisa, Methods Mol Biol: Protein Function Prediction 1611 (2017) 135–45.
2020 November •
www.microscopy-today.com NEW ZIVA
7-LINE LASER LIGHT ENGINE IT JUST KEEPS GETTING
BRIGHTER…
• Spectral breadth: 405, 446, 477, 520, 546, 638, 749nm
• Power: ~100 mW/ colorband at distal end of 100 m diameter fiber
• Control: Active power stabilization
• Stability: Exceptional reproducibility, ideal for quantitation
• Ease of use: Pre-aligned, independent lasers
• Applications: Confocal, SIM, super-resolution microscopy, optogenetics and more
• Off-the-shelf and custom configurations upon request
www.lumencor.com 35 ®
for their feedback. Figures 2–8
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76