search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Imaging the Genome


Figure 7: ORCA workflow and implementation in SRX. (A) An overview of ORCA workflow. A set of oligonucleotide probes is designed to label a genomic region of interest. Each segment carries a unique barcode and represents a single step of the ORCA walkthrough. Segments are imaged sequentially to build the 3D recon- struction of chromatin architecture. The 3D positioning of each segment is then used to build a distance map that is comparable to a Hi-C map. (B) A representative 3D reconstruction of chromatin architecture image visualized in SRX software. (C) A contact frequency map generated in SRX software by averaging the distance maps associated with ORCA walkthroughs of many cells. Panel A was adapted with permission from its original version [35].


When comparing STORM, OligoSTORM, and ORCA,


decreasing the step size increases the sequence resolution. STORM gives an overview of the shape of the structure without sequence information, OligoSTORM adds in the sequence context to the structure, and ORCA results in a finer sequence resolution but does not provide the space-filling component that is obtained with OligoSTORM. Te techniques are complementary, and their use depends on experimental capabilities, as well as the features being studied. ORCA is a good choice for a high-throughput study of a small genomic region, whereas OligoSTORM is preferred for tak- ing larger steps to image a larger genomic region. Te ultimate goal is to have seamless integration within


SRX of imaging data with standard genomic soſtware plat- forms, and analysis for a variety of genomic imaging work- flows, including ORCA and OligoSTORM. Tis will enable


2020 November • www.microscopy-today.com


easier genomic modeling and Hi-C mapping of genomic data, helping to bridge the gap between single-cell imaging data and larger-scale data from ensemble methods.


References [1] J Dekker et al., Science 295 (2002) 1306–11. [2] S Sati and G Cavalli, Chromosoma 126 (2017) 33–44. [3] KS Matthews, Microbiol Rev 56 (1992) 123–36. [4] E Abbe, Arch Mikroskop Anat 9 (1873) 413–18. [5] SW Hell and J Wichmann, Optics Lett 19 (1994) 780–82. [6] MJ Rust et al., Nat Methods 3 (2006) 793–95. [7] E Betzig, Optics Lett 20 (1995) 237–39. [8] E Betzig et al., Science 313 (2006) 1642–45. [9] ST Hess et al., Biophys J 91 (2006) 4258–72. [10] MGL Gustafsson, J Microsc 198 (2000) 82–87.


25


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76