search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Carmichael’s Concise Review


Figure 1: Hindlimb vibration stimulus: a) Schematic of a vibrational stimulus applied to the right hind limb while imaging with the mini-mScope. b) Composite of a raw grayscale image of the brain and the pseudocolor frame where the largest average ΔF/F occurred within the 1-s stimulus period. The white dashed circle indicates the region of interest with maximum response. c) Montage of average cortical calcium response to the vibration stimulus across time.


Figure 2: Left eye visual stimulus: a) Schematic of a visual stimulus applied to the left eye while imaging with the mini-mScope. b) Composite of a raw grayscale image of the brain and the pseudocolor frame where the largest average ΔF/F occurred within the 1-s stimulus period. The white dashed circle indicates the region of interest with maximum response. c) Montage of average cortical calcium response to the vibration stimulus across time.


appropriate cortical region with a physiological lag time. Some studies involved solitary mice, and other studies included a companion mouse of the same sex. Numerous results demonstrated the utility of the mini-mScope to study functional connectivity during behaviors that are unique to freely behaving mice. Tese and other studies provide proof-of-concept for


the use of the mini-mScope with a wide range of transgenic mice for broad expression of genetically encoded calcium indicators. Furthermore, the availability of mouse models of neurodegenerative and neuropsychiatric disorders opens the opportunity to use this unique instrument to examine a wide range of complex behaviors in healthy mice and to observe how these activities may be disrupted in disease states.


2021 September • www.microscopy-today.com Dr. Kodandaramaiah’s laboratory is currently


developing sensors with increased sensitivity and imaging speed along with other improvements to the mini-mScope. Tey are also working to expand the FOV to examine other brain regions. Tese and other efforts are certain to result in a microscope that yields more important revelations of normal and abnormal mammalian brain function.


References [1] Rynes et al., Nat Methods, 18 (2021) https://doi. org/10.1038/s41592-021-01104-8.


[2] Te author gratefully acknowledges Dr. Suhasa Kodandaramaiah for reviewing this article.


9


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80