search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Control Test 3: Functions and relationships; algebra 2; graphs; surface, area and volume Total: 50 marks


Question 1 1.1


1.2


Time: 1 hour


Sibongile goes on a business trip and leaves home at 6 a.m. She returns home at 9 p.m. During her trip, Sibongile spends 40% of her time travelling. Calculate the number of hours Sibongile spent travelling.


Sibongile’s company uses the following formulae to calculate allowances for travel and meals: Allowance ( R ) = 15d + k − 5d


of days away from home and k represents the distance (in km) travelled.


1.2.2 Determine how many kilometres Sibongile would have travelled if she received an allowance of R195 for three days travel.


Question 2 2.1


(2)


_____ 3 where d represents the number


1.2.1 What would Sibongile’s allowance be if she spent four days on a business trip and travelled 740 km?


(2)


(2) [6]


Factorise the following:


2.1.1 x2 − 6x + 5 2.1.2 a2 + 2a − 8 2.1.3 y4 − 16


2.1.4 6x2 + 72x + 120


2.2 Simplify using factorisation: 2.2.1 3 x 2 − 9x − 12


___________ 3x − 12


2.2.2 5 x 2 − 125


________ x + 5


2.3 Solve the following equations: 2.3.1 3(x − 2) = 2x + 1 2.3.2 x2 − 8x = 9 2.4


(2) (2) (2) (3)


(3) (2)


(1) (2)


The base of a triangle is x cm and its perpendicular height is 3 cm less than the base. The area of the triangle is 20 cm 2.


2.4.1 Express the perpendicular height of the triangle in terms of x. 2.4.3 Set up an equation (in terms of x) that expresses this situation. (1)


2.4.2 Write down a formula to calculate the area of a triangle in terms of its base (b) and its perpendicular height (h).


(1) (1)


2.4.4 Solve your equation and find the base and the perpendicular height of the triangle. Show all your calculations and test your answers. Make sure that your answers make practical sense.


(3) [23]


Chapter 17: Programme of Assessment


341


CHAPTER 17


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71