search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
3.3 and 3.4 y


12 11 10


1 2 3 4 5 6 7 8 9


0 12 34 5


Unit 6 Integers Unit focus


• revise the additive and multiplicative inverses of integers.


Background information In previous grades, the learners learnt to: • do calculations involving all four operations with integers; • do calculations involving all four operations with numbers that involve the squares, cubes, square roots and cube roots of integers;


• recognise and use commutative, associative and distributive properties of addition and multiplication of integers; and


• recognise and use additive and multiplicative inverses for integers. Exercise 1


Guidelines on how to implement this activity


Revise the number line for integers by drawing such a number line on the board and ask questions to find out what the learners still remember about integers and the properties of integers.


Suggested answers 1.1


7 + ( −4 ) = 3


1.3 −7 + ( −4 ) = −11 7 + ( −10 ) = −3


1.5


1.2 −7 + 4 = −3 1.4 12 + ( −12 ) = 0 1.6 0 + ( −17 ) = −17


Chapter 1: Numbers and integers 43 Learner’s Book page 35 6 7


• From the table in 3b above one can see that the variable b increases when the variable l decreases and that the variable b decreases when the variable l increases. This is also shown by the graph you drew in 3d.


• In general: x and y are indirectly proportional if, as the value of x increases the value of y decreases, and as the value of x decreases the value of y increases.


x 8 9 10 11 12


Learner’s Book page 35


This unit focusses on the following: • revise calculations with integers; • revise the use of the commutative, associative and distributive properties of addition and multiplication for integers; and


CHAPTER 1


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71