search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Remedial


Some learners may have difficulty with doing correct calculations with integers, especially where negative integers or large integers are involved. Revise the basic “sign rules” with them and show them how to use brackets and how to remove brackets, especially where negative integers are involved.


Exercise 5 Guidelines on how to implement this activity


Demonstrate the commutative, associative and distributive properties for the operations with integers on the board. Also, the fact that 1 is the identity for multiplication and that the only integers that have multiplicative inverses are 1 and –1. Motivate the latter statement by showing that, for example: although (−2) ×


the rational number − 1


( − 1 __


Suggested answers 1.1


the answers once they completed the exercise. Learner’s Book page 39


2 ) = 1, the multiplicative inverse of –2, it is not an integer but


__ 2 . Let the learners do Exercise 5 in the classroom and discuss


Yes, 7 × ( 5 + 3 ) = 7 × 8 = 56 and ( 7 × 5 ) + ( 7 × 3 ) = 35 + 21 = 56


1.2 Yes, ( 10 + 5 + 3 ) × 2 = 18 × 2 = 36 and ( 10 × 2 ) + ( 5 × 2 ) + ( 3 × 2 ) = 20 + 10 + 6 = 36


1.3 Yes, 5 × ( 11 − 4 ) = 5 × 7 = 35 and ( 5 × 11 ) − ( 5 × 4 ) = 55 − 20 = 35 1.4 Yes, ( 9 − 4 ) × 3 = 5 × 3 = 15 and ( 9 × 3 ) − ( 4 × 3 ) = 27 − 12 = 15 1.5


a × ( b − c ) = ( a × b ) − (a × c) Multiplication of integers is distributive over subtraction. 2.1


No, 14 − 9 = 5 but 9 − 14 = −5 Subtraction of integers is not commutative.


2.2 No, 2 − ( 5 − 6 ) = 2 − ( −1 ) = 3 but ( 2 − 5 ) − 6 = −3 − 6 = −9 Subtraction of integers is not associative.


2.3 No, 12 ÷ ( 6 ÷ 2 ) = 12 ÷ 3 = 4 but ( 12 ÷ 6 ) ÷ 2 = 2 ÷ 2 = 1 Division of integers is not associative.


2.4 3.1


No, −8 ÷ 4 = −2 but 4 ÷ ( −8 ) = −0,5 Division of integers is not commutative.


83 × 57 + 83 × 43 = 83 × ( 57 + 43 ) = 83 × 100 = 8 300


3.2 15 × ( −8 ) + 25 × ( −8 ) = −8 × ( 15 + 25 ) = −8 × 40 = −320 3.3 8 × ( −73 ) – 8 × ( −23 ) = 8 × ( −73 − ( −23 ) ) = 8 × − 50 = −400


Remedial


Some learners may have difficulty with interpreting and applying the associative and distributive properties for operations with integers. Demonstrate these with easy examples and progress to more involved cases like applying the distributive property “in reverse”.


Chapter 1: Numbers and integers


45


CHAPTER 1


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71