This page contains a Flash digital edition of a book.
TECHNOLOGY INTEGRATION


wider the opening in SiO2


, the better the thermal conductivity,


so we have tried to use this in our templates. This has led us to optimise the deposition process for structures with 1 μm-wide openings in SiO2


By optimising our growth process, we can realise complete defect fi ltering with these processed wafers, while maintaining a smooth SiO2


new defects.


Getting the light in Integration of III-Vs and silicon requires coupling of the generated optical mode in the active region to the underlying silicon. To do this, there must be evanescent coupling of the optical mode with the silicon waveguide, which is buried in the dielectric mask in such a way that the whole structure works not only as a defect fi lter but also as a platform for evanescent coupling of the optical mode.


Simulations by us, and also by the group of Pallab Bhattacharya from the University of Michigan, show that evanescent coupling can occur between InGaAs/GaAs based quantum dot lasers and a lab-grown silicon-SiO2


waveguide-cladding structure with


similar dimensions. We are still to fabricate fi nal devices using our ELOG technology. However, we don’t anticipate any major


Figure 6. Transmission electron microscopy shows the high quality of the InGaAsP multi-quantum wells grown on uncoalesced ELOG InP on silicon.


obstacles to realising this, given the excellent material quality of the isolated large areas of InP, and the subsequent growth of uniform InGaAsP multiple-quantum wells.


One of the challenges that still lies ahead is that the photonic industries continues to live in the micro world, and substantial scaling is therefore required, given that the electronics industry has reached the smallest possible nano-dimensions.


Other groups have started to try and close this gap by either developing tiny plasmonic-based devices or ultra-small cavity lasers based on GaAs nanowires and InP polytypic nanorods – the latter feature ultra-low thresholds.


Our integration scheme may help in all these efforts, because it promises to deliver an affordable, monolithically integrated platform for III-Vs and silicon that can form the foundation for the highly complex photonic integrated circuits needed in the near future.


Figure 5. Cross-sectional transmission electron microscopy reveals the defect-fi ltering mechanism in wide openings.


 Several co-workers in our laboratory contributed to this work. This work was partially supported by URO of Intel Inc., US, in which we enjoyed the fruitful collaboration with John Bowers from UCSB.


that are etched to a depth of 2 μm. surface and sidewalls to avoid generation of any


Further reading H. Kataria et. al. Semicond. Sci. Technol. 28 094008 (2013) H. Kataria et. al. IEEE J. Sel. Top. Quant. Electron. 20 JULY/AUGUST (2014) H. Kataria et. al. Proc. of SPIE 8989 898904-1. Z. Wang et. al.. Materials Science and Engineering B 177 1551 (2012) J. Wang et. al. Opt Exp. 16 5136 (2008)


64 www.compoundsemiconductor.net Issue VI 2014 Copyright Compound Semiconductor


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160