This page contains a Flash digital edition of a book.
news digest ♦ Lasers


Compound Semiconductors to be worth $104.55 Billion in 2020


Market expected to grow at 12.63 percent CAGR from 2014 to 2020


According to a new report published by MarketsandMarkets, the compound semiconductor market is expected to grow at a CAGR of 12.63 percent from 2014 to 2020, reaching $104.55 billion in 2020.


The compound semiconductor market includes materials such as III-V, II-VI, IV-IV groups of compound semiconductors, and sapphire. Beneficial features such as direct gap, wide range of band gaps, higher electron mobility, and low power consumption, mean compound semiconductors are finding wide application in LEDs; high speed and high power devices; lasers; sensors; and IR-visible-UVs.


The report ‹Compound Semiconductor Market by Type (III-V, II-VI, IV-IV, sapphire), Deposition Technology (CVD, MBE, HVPE, Ammonothermal, MOVPE, LPE, ALD), Product (Power, Opto- electronic), Application, and Geography-2013-2020’› covers the overall compound semiconductor market segmented into five major segments: compound semiconductor types, deposition technology, products, application, and geography.


MarketsandMarkets is a global market research and consulting company based in the US.


Inc, and the Research center for Applied Science in Taiwan have designed and made an InGaN VCSEL with a composition-graded electron blocking layer (GEBL).


In their study, published in Laser Physics Letters, they been demonstrated that laser output performance is improved by using a GEBL when compared to the typical VCSEL structure of a rectangular electron blocking layer.


The output power obtained at 20kAcm-2 and the enlarged slope efficiency. is enhanced


by a factor of 3.8 by the successful reduction of threshold current density from 12.6 to 9.2kA cm-2


Numerical simulation results also suggest that the improved laser output performances are due mainly to the reduction of electron leakage current and the enhanced hole injection efficiency in the multiple- quantum-well (MQW) active region.


‹Design and fabrication of a InGaN vertical-cavity surface-emitting laser with a composition-graded electron-blocking layer’ by BC Lin et al, appeared in Laser Phys. Lett. 11 085002 doi:10.1088/1612- 2011/11/8/085002


VI Systems gets US patent


for 40G VCSEL technology Patent also applies to visible and infrared LEDs


Lasers


Taiwanese researchers improve InGaN VCSELs


Composition-graded electron blocking layer boosts output power


Researchers from the National Chiao Tung University, the National Changhua University of Education, Advanced Optoelectronic Technology


100 www.compoundsemiconductor.net Issue VI 2014


VI Systems GmbH, a developer and producer of optical devices for data transmission, has received a US patent covering the material composition of optoelectronic devices including VI Systems’ 40 Gbit/s vertical cavity surface emitting laser (VCSEL).


The patent ‘Optoelectronic Device with a Wide Bandgap and Method of Making Same’, protects the company’s proprietary concept of ultra high- speed vertical VCSELs. The invention relates to semiconductor light emitting devices for visible and infra-red spectral ranges, and can therefore also be applied to LEDs targeting the bright red, orange, yellow, or green spectral ranges.


VI Systems’ offers engineering samples of its 40 Gbit/s VCSEL at 850nm wavelength as bare die chips or as fibre coupled test modules.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160