FOCUS RESEARCH NEWS
Lidar mapping of Great Barrier Reef reveals separate vast reef
U
sing lidar technology, scientists in Australia have discovered a coral reef spanning more than 6,000km behind
the Great Barrier Reef. The high-resolution seafloor data obtained
by lidar-equipped aircraft belonging to the Royal Australian Navy revealed great fields of unusual doughnut-shaped circular mounds, which could help marine geologists better understand how global warming is affecting underwater ecosystems. The scientists from James Cook University
(JCU), the University of Sydney and the Queensland University of Technology mapped more than 6,000 square kilometres of the newly-discovered reef, which sits much deeper than the Great Barrier Reef and is three times larger than scientists previously estimated it to be. ‘We’ve known about these geological
structures in the northern Great Barrier Reef since the 1970s and 80s, but never before has the true nature of their shape,
10 ELECTRO OPTICS l OCTOBER 2016
size and vast scale been revealed,’ said JCU’s Dr Robin Beaman. ‘The deeper sea floor behind the familiar [Great Barrier] coral reefs amazed us.’
The fields of circular doughnut-shaped rings are Halimeda bioherms, large reef- like geological structures formed by the growth of a green algae called Halimeda that have living calcified segments. These leave small limestone flakes when the algae die, which over time build up into large reef-like mounds, or bioherms.
Marine geologists previously
‘ The deeper sea floor behind the familiar [Great Barrier] coral reefs amazed us’
understood these bioherms to form linear, dune-like parallel ridges and troughs, quite different from the complex sea floor now revealed with the benefit of lidar and multibeam swath bathymetry data collected in the past few years. The revelations about the extent of the bioherm field make questions over
its vulnerability to climate change even more pressing, commented Jody Webster, UTS associate professor: ‘As a calcifying organism, Halimeda may be susceptible to ocean acidification and warming. Have the Halimeda bioherms been impacted, and if so to what extent?’ The discovery has also opened up many other new avenues of research, Dr Beaman added: ‘For instance, what do the 10-20 metre thick sediments of the bioherms tell us about past climate and environmental change on the Great Barrier Reef over this
10,000 year timescale?’
He said future research would require sediment coring, sub-surface geophysical surveys, and employing autonomous underwater vehicle technologies to unravel the physical, chemical and biological processes of the structures.
@electrooptics |
www.electrooptics.com
JC Photo/
Shutterstock.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52