This page contains a Flash digital edition of a book.
Phase


Potential Impact


WCS Details


will be between 0.5 – 3m into the bed. Anchor arrays (of 4 – 6 no. anchors) will typically be smaller than jack-up barge legs


Assessment Method


Assessment of Effect


previously been displaced will avalanche back into the depression until a maximum stable slope angle is achieved. The pits will infill under tidally-driven sediment transport, probably over a timescale of months to years. For anchors, anchor scars will be created in the sea bed. These will become reworked and flattened to a baseline conditions by the action of tidal currents over a few tidal cycles.


Significance of impact on receptors = Not significant


Construction and Decommissioning


Operational


Disruption to coastal morphology at cable landfall.


Changes to the tidal regime due to the presence of the foundation structures.


Horizontal Directional Drilling (HDD) at landfall at Bawdsey.


Array of WTGs founded on GBS


• Conceptual understanding of potential impact


• Numerical modelling using Delft3D- FLOW


• Existing evidence base from other wind farms


• Conceptual understanding of potential impact


• Interpretation against baseline tidal current values (typically 1.15 – 1.25m/s on peak spring tides)


• Operational


Changes to the wave regime due to the presence of the foundation structures.


Array of WTGs founded on GBS


• Numerical modelling using Delft3D- SWAN


• Existing evidence base from other wind farms


• Conceptual understanding of potential impact


• Interpretation against baseline wave climate values (typically Hs = 0.5 – 1.0m and Tm = 3.5 – 4.0s)


• Operational


Changes to the sediment transport regime due to the presence of the foundation structures.


Array of WTGs founded on GBS


• Outputs from numerical modelling using Delft3D FLOW and SWAN


• Standard empirical equations (mobilisation and settling of sediment particles)


• Existing evidence base from other wind farms and industry guidance (Kenyan & Cooper, 2005)


• Conceptual understanding of potential impact


• Interpretation against baseline sediment transport regimes


Operational


Scour effects due to the presence of the foundation structures, resulting in erosion, re-suspension and settling of sediments.


Jackets (no scour protection planned) and GBS (scour protection provided) both considered.


• Outputs from numerical modelling using Delft3D FLOW and SWAN


• Standard empirical equations (empirical scour formulae)


• Existing evidence base from other wind farms


Phys_Proc_background Sept 2013


East Anglia THREE & East Anglia FOUR Page 37


Scour hole development will occur around individual legs of a jacket, and group scour under the jacket may also occur. With scour protection provided, no scour will occur around the GBS.


Significance of impact on receptors = Not significant


Local changes in tidal current and wave regimes may induce scour. The broader bedload and suspended sediment transport regimes will be largely unaffected as chnages in tidal and wave regimes are so minor. Similarly, there will be no change in the sediment transport regime at the shore.


Significance of impact on receptors = Not significant


Maximum reductions in wave height appear within, or along the boundary of, the array. These may reach up to 20% during large storm events within the array, but under typical conditions reductions are less than 2% at a distance of 40km from the array. There is no measureable effect on wave conditions at the shore.


Significance of impact on receptors = Not significant


Minimal direct disturbance is caused by HDD and the construction programme for this activity is relatively short in duration (up to a few months).


Significance of impact on receptors = Not significant


No measureable change in water levels (maximum modelled change is 0.007m). Localised flow accelerations around the foundations and wake effects downstream of the foundations (within up to a few hundred metres downstream). Maximum reductions modelled in the range 0.05 – 0.1m/s within the array. Maximum increases modelled to be 0.05m/s within the array. Only very minor changes in flow direction (<5°).


Significance of impact on receptors = Not significant


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231