This page contains a Flash digital edition of a book.
79.


It is notable from Tables B.2 and B.3 that the greatest scour depths are predicted to occur at Deltares model output point A9 (which is approximately coincident with Noble Denton model output point 3), where the water depth is 30.8m LAT, and that scour depths reduce in areas of deeper water. This is in keeping with the findings of the scour assessments presented in Appendix 7.3 which incorporated assessments directly at Noble Denton model output point 3 (in water depth of 30.8m LAT) and a ‘deeper water’ sensitivity test.


80.


The Noble Denton 1-year return period conditions at their model output point 3 are more severe than those obtained by Deltares at the same return period, for their model output point A9. The two modelling points are however, approximately coincident. This indicates that at the 1-year return period, the previous scour assessments at Noble Denton model output point 3 represent a worse case than would be obtained using the metocean data from Detares model output point A9.


81. At the 50-year return period, the results at Deltares model output point A9 are more severe than those applying to the Noble Denton model output point 3. This explains why the granular scour depths calculated at the 1-year return period, obtained using the Deltares data, are less severe than those obtained using the Noble Denton metocean predictions, but the situation is reversed under the 50-year scenario.


B.2.2 Soil strength scour case 82.


To investigate the effects of the more severe metocean conditions under 50-year conditions on predictions of scour volumes, predictions have been made here of the equilibrium scour depth, taking account of sea bed soil strength, using the Deltares metocean predictions at their model output point A9.


83.


The resulting scour depth, by applying the Annandale soil strength method described in Appendix 7.3, is of the order of 4.9 to 5.0m. This is slightly greater than the 4.62m obtained using the Noble Denton metocean data at model output point 3, but the difference is deemed insufficient to warrant a full re-appraisal of scour assessments, especially as Deltares model output point A9 represents a worst case in terms of scour depths compared with the other model output points.


84.


The predicted scour volume at this location is 5,194m3 (based upon a scour hole depth of 4.9m and using the 50 year metocean data from Deltares model output point A9), compared to the 4,580m3 that was reported previously and which was based upon the metocean data from Noble Denton model output point 3.


Preliminary Environmental Information May 2014


East Anglia THREE Offshore Windfarm


Appendix 7.3 Page 35


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231